By Categories: Editorials, Science

Receive Daily Updates

Stay updated with current events, tests, material and UPSC related news

As the old saying goes, mother knows best. Many scientists, however, would argue that Mother Nature knows best. 
 
Increasingly, researchers are turning to nature for inspiration and innovative solutions to human problems. From “green” cement to sustainable architecture to self-cleaning paint products, scientists and inventors are tapping into the power of this new field—biomimicry—to help them design more effective products. 
 
Although there are many ways in which nature has inspired innovation, a hot topic among scientists studying biomimicry is bioluminescence, or the production of light by living organisms.
Studying species ranging from deep-ocean dwellers—including fish, bacteria, and jellies—to fireflies, researchers are examining bioluminescent properties with an eye toward their potential human uses. While researchers are confident they understand the science of bioluminescence in nature, taking that property out of its biological environment and repurposing it for the human world has proven tricky. 
 
Evolution does a very good job of designing things to do what it wants them to do,” says Theo Sanderson, a geneticist at the Wellcome Trust Sanger Institute in the United Kingdom. 
 
The difficulty is in adapting these properties for new uses.
“We have a light-emitting system that is very good at functioning in the context of a bacterium and to emit the amount of light a bacterium needs to emit. When you transfer that over to other systems, there will be quite different biochemistry.”
 
Sanderson’s experience with bioluminescence and biomimicry dates to 2010, when he and his colleagues at Cambridge University entered the International Genetically Engineered Machine (iGEM) competition.
 
“We imagined that perhaps in the future, rather than erecting streetlights, people might be able to plant glowing trees,” he says.
 
To explore this idea, the team did some genetic modification. They took part of the DNA sequence of Aliivibrio fischeri, a bioluminescent bacterium that lives in symbiosis with squid, and inserted it into Escherichia coli, allowing E.coli to give off light. The project was cleverly dubbed “E. glowli.”
 
Though the Cambridge team ultimately wasn’t able to produce bioluminescent trees, the “BioBrick” they did produce was later used by researchers at Peking University as part of the 2011 iGEM. The Peking researchers used the BioBrick to allow bacteria in different flasks to communicate by sending light signals. 
 
Other researchers are exploring different potential applications for bioluminescence.
Mathew Maye, a chemist at Syracuse University, works with an interdisciplinary team to explore bioluminescent properties at the nanoscale. Simply put, Maye’s team wants to “use biology for non-biological purposes.”
 
 
Maye and his team use luciferase—an enzymefirst identified in fireflies—to carry out their experiments. When luciferase interacts with luciferin, a related compound, the chemical reaction produces light. 
 
Maye’s team is exploring applications that include identifying the presence of certain toxins within a system and lighting extremely small spaces. Currently, the team is trying to “completely understand the process and to judge the complete brightness of the system.”
 
Recyclable Luminescence
 
One issue that both Maye and Sanderson have confronted is how to make the light system self-sustaining. As Sanderson says, “We don’t know how to make the fuel that the luciferase runs on [luciferin], and that means that it’s expensive to work with because you have to add that fuel.” 
 
Until researchers find a way to make the system “recyclable,” we may not see bioluminescent technology used to light our streets. 
 
Serious breakthroughs, however, may be around the corner. 
 
“We’re continually finding new, interesting scientific discoveries . . . that will help us to design the next generation,” says Maye. “. . . I would say that there will be some type of bioluminescent lighting within the next five to ten years. Especially if you can make it somehow replenishable or recyclable.”
 
The iGEM competition, which launched Sanderson into the field of biomimicry, is held annually and supported by partners like the Federal Bureau of Investigation and software giant Autodesk. Maye’s research is funded in part by the Air Force and the Department of Defense. With the wide variety of potential applications for this technology, it’s no wonder both publicand private industry are lining up to find out how they can take advantage of this emerging knowledge.
 
Beyond the many practical applications of bioluminescent technology, biomimicry has captured researchers’ attention based on something far more fundamental: human curiosity. 
 
As Sanderson says, “When you see what nature can achieve and the amazing diversity of things it can do—emitting light, producing incredibly strong substances—if you imagine what mankind could do if it could harness that power, it’s an exciting area to work in.”

Share is Caring, Choose Your Platform!

Recent Posts

  • Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.

    Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.

    The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.

    Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.

    In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.

    Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.

    “Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.

    India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.

    With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.

    They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.

    India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.

    As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices

    The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).

    The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.

    Here is an approximate break-up (in Rs):

    a)Base Price

    39

    b)Freight

    0.34

    c) Price Charged to Dealers = (a+b)

    39.34

    d) Excise Duty

    40.17

    e) Dealer Commission

    4.68

    f) VAT

    25.35

    g) Retail Selling Price

    109.54

     

    Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.

    So the question is why government is not reducing the prices ?

    India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.

    However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.

    That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.

    Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.

    Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.

    But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.

  • Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.

    This can pose a significant environmental and health threat.

    In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.

    A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.

    As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.

    For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.

    It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.

    Traditionally, engineering and public health have been understood as different fields.

    Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.

    Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.

     

    India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.

    The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.

    In India, public health engineering is executed by the Public Works Department or by health officials.

    This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering. 

    Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.

    Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.

    Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..

     

    There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.

    Diseases cannot be contained unless we provide good quality and  adequate quantity of water. Most of the world’s diseases can be prevented by considering this.

    Training our young minds towards creating sustainable water management systems would be the first step.

    Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.

    To leverage this opportunity even further, India needs to scale up in the same direction.