By Categories: Science

Understanding Radioactive Waste

 

Nuclear, or radioactive waste is the waste product of nuclear reactors, fuel processing plants, research facilities and hospitals, and is also produced when nuclear reactors and facilities are dismantled.

Radioactive waste is differentiated into high-level and low-level radioactive waste. While high-level waste is the spent fuel detached from nuclear reactors, low-level waste is generated from other scientific, industrial and commercial uses of radioactive materials (USNRC, 2015).

India however, also includes a third category called intermediate-level radioactive waste, which require shielding for disposal but little or no heat protection. Intermediate-level radioactive wastes are disposed in a similar manner to high-level radioactive waste and are concentrated and fixed in cement. These qualities are delineated according to the radioactive content present in the waste and its half-life i.e. the time consumed by the waste in losing half of its radioactivity.

High-level radioactive waste comprises the fuel which is used up in a nuclear reactor for generating electricity, usually uranium, which is called spent fuel – fuel that is no longer efficient for producing electricity. Nuclear energy produced through the process of nuclear fission produces fission products such as radioactive isotopes of strontium-90 and cesium-137, which are lighter elements that provide the penetrating radiation and the hottest elements in radioactive waste.

Also plutonium, a heavier element produced during fission by the capture of neutrons by uranium atoms and also other trans-uranic elements heavier than uranium do not possess the same heat and penetrative capacity as lighter elements but however, take much longer to decay and can be a radioactive hazard in nuclear waste much longer than 1,000 years (USNRC, 2015).


Management of radioactive waste

Management of radioactive waste is dependent on its properties, which can be radioactive, chemical, or physical properties.

High-level radioactive wastes are made up of complex amalgamations of radionuclides (radioactive forms of elements) of about 30 to 40 different elements. Most of these radionuclides are toxic and emit radioactive particles like alpha, beta or gamma rays during their decay. The disposal of high-level radioactive wastes requires their storage i.e. containment and concentration.

There are different time periods for which high-level radioactive wastes need to be isolated and stored, depending on the amount of time the radioactive wastes take to decay i.e. reach a level roughly equal to naturally occurring radiation levels i.e. to that of uranium ore for example.

The time period required can sometimes extend up to more than 1,00,000 years and as this makes storage difficult. Technologies are being developed in an effort to reduce the time period to about 1,000 to 10,000 years. In contemporary times, however, the most potent storage solution is part-geological – the immobilization of radioactive wastes.


Mechanism of immobilization

The immobilization of radioactive wastes is based on the multiple barrier system (MBS) concept, which is composed of an engineered barrier system and a natural barrier system. The engineered barrier system, with cooled off radioactive wastes contained inside a stainless steel canisters placed inside a drilled hole underground that is surrounded by rocks such as granite or basalt, which act as a natural barrier.

There are other storage methods such as the dry cask method where the stainless steel canisters containing nuclear waste are surrounded by concrete after the spent fuel is cooled for about 5 years.

However, the dry cask method is not as safe as the geological method and cannot be called a permanent method of storage of radioactive wastes. Some other methods of disposal of radioactive wastes include reprocessing, transmutation and space disposal.

Geological disposal of radioactive wastes is not present however, in many countries and some of the countries that have implemented immobilized geological disposal include Sweden, France, Finland and India (in Tarapur and Trombay).

Low-level radioactive waste comprises of substances that are contaminated with radioactive material or those that have become radioactive due to exposure to radioactivity. The amount of radioactivity in low-level radioactive waste can vary from base levels found naturally to the amount of radioactivity found in nuclear reactors. Low-level radioactive wastes are conventionally stored on-site until it decays and then can be disposed off harmlessly or it can also be shipped to a secure location (USNRC, 2015).


Health Effects

The nature and severity of the health effects of radiation exposure depends upon the amount of radiation and the time for which one is exposed to radiation. Radiation exposure in relation to human health can be chronic or acute exposure.

Continuous or intermittent exposure to radiation over a long period of time leads to chronic exposure. In chronic exposure the health effects are observed a certain time period after exposure to radiation, and most commonly leads to cancer.

Other health effects include genetic changes, cataracts, tumors, etc.

Acute exposure occurs when large parts of the human body are exposed to large amounts of radiation and can occur one time or multiple times over intervals of time (USEPA, 2017). Acute exposure leads to radiation sickness, which is a collection of health effects taking effect within 24 hours of acute exposure to radioactivity involving mainly cellular degradation and its various symptoms.

Smaller exposures can lead to gastrointestinal effects, nausea, vomiting and reduced blood counts. A larger exposure can lead to neurological effects and even death. As the cells of pregnant women and foetuses divide rapidly, providing greater opportunity for radiation to spread and cause cell damage, they are particularly at risk of exposure to radiation.

Among power plant accidents and radioactive contamination risks the most recent disaster in memory is the Fukushima disaster that occurred after the earthquake and tsunami that rocked Japan in 2011.

The disaster led to explosions and melting of fuel rods at the power plants and although there weren’t as many casualties as in the Chernobyl disaster of 1986, the long term effects and cancer-related death are still taking place.

Most of the nuclear power plant disasters in recent history have taken place in Europe and the US, with the Fleurus (Belgium 2006), Forsmark (Sweden 2006), Erwin (US 2006), Sellafield (UK 2005) Braidwood (US 2005) and Paks (Hungary 2003) disasters.

The most severe disasters in terms of casualties and damage to the environment are said to be the Chernobyl (erstwhile USSR 1986), Kyshtym (erstwhile USSR 1957), Windscale (UK 1957) and Three Mile Island (US 1979) disasters with the former two leading to a severe release of radioactivity with severe health and environmental consequences while the latter two had a more limited release of radioactivity (The Guardian, 2011) but led to numerous deaths due to inadequate containment.


Policy Regime on Radioactive Wastes

In terms of the governance of radioactive wastes, the first point is that radioactive wastes can only be handled by trained personnel who are specialists. They mostly work in the 446 nuclear power plants operational in the world that produce radioactive wastes (IAEA, 2017).

However, other than the organizational aspect, the only legal policy to implement safety standards in managing radioactive wastes internationally is the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

While the International Atomic Energy Agency (IAEA) manages nuclear safety on the international arena, in India the Atomic Energy Regulatory Board (AERB) formulates policies and lays down safety standards concerning nuclear energy. The AERB exercises regulation by laying down guidelines and a licensing system based on stage-based evaluation, which is the bulwark of India’s nuclear safety programme.

As per the AERB, there are 20 operating nuclear plants in India that includes 4 units of the Tarapur nuclear power station, 6 units of the Rajasthan nuclear power station, 2 units of the Kalpakkam nuclear power station in Tamil Nadu, 2 units of the Narora nuclear power station in UP, 2 units of the Kakrapar nuclear power station in Gujarat and 4 units of the Kaiga nuclear power station in Karnataka (AERB, 2013).

AERB’s involvement in India’s nuclear safety programme includes reactor design policies, radiation exposure targets, radioactive waste management, and preparedness for nuclear emergencies. The most popular storage method is vitrification (converting radioactive waste to glass-like solid cakes) in India, followed by storage in steel canisters. There is a necessity in India for more geological storage facilities like those in Tarapur and Trombay.

The instrument for the IAEA internationally is the Joint Convention that seeks to achieve nuclear safety through an international collaborative approach based on the sharing of expertise on radioactive wastes and spent fuel management.

The Convention fixes international safety standards and measures to ensure nuclear safety based on agreements between stakeholders and it strives to achieve national arrangements in individual countries based on the standards agreed upon in the convention. The Convention also includes clauses that facilitate individual countries with improper infrastructures to receive international assistance in case of a lack of resources. The Convention applies both to countries with nuclear power programmes and those using radiation sources for industrial and commercial purposes (IAEA, 2011).

U.C. Mishra of the AERB, writing while working for the Bhabha Atomic Research Centre (BARC) says that, “The preferred approach in our country in this perspective [environment] is concentration and contamination of radionuclides rather than their dilution and dispersion into the environment” (U.C. Mishra, BARC, 2011). One only needs to remember the Chernobyl, Fukushima and Three Mile Island disasters to understand the horrific impacts radiation discharges can have on the environment and health.

In such a scenario, a proper method and discipline of storing radioactive wastes, coupled with a regulative infrastructure that supports nuclear safety and an international regime that facilitates and ensures the presence of safety standards and infrastructure in case of deficiencies in individual countries is imperative.

The first step towards this would be a foolproof method of containing radioactive wastes, and the geological immobilization of radioactive wastes, seen as among the most effective techniques, or a similarly effective storage technology effectively implemented worldwide would be a giant step forward in this regard.


 

Share is Caring, Choose Your Platform!

Receive Daily Updates

Stay updated with current events, tests, material and UPSC related news

Recent Posts

  • Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.

    Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.

    The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.

    Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.

    In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.

    Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.

    “Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.

    India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.

    With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.

    They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.

    India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.

    As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices

    The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).

    The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.

    Here is an approximate break-up (in Rs):

    a)Base Price

    39

    b)Freight

    0.34

    c) Price Charged to Dealers = (a+b)

    39.34

    d) Excise Duty

    40.17

    e) Dealer Commission

    4.68

    f) VAT

    25.35

    g) Retail Selling Price

    109.54

     

    Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.

    So the question is why government is not reducing the prices ?

    India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.

    However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.

    That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.

    Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.

    Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.

    But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.

  • Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.

    This can pose a significant environmental and health threat.

    In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.

    A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.

    As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.

    For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.

    It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.

    Traditionally, engineering and public health have been understood as different fields.

    Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.

    Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.

     

    India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.

    The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.

    In India, public health engineering is executed by the Public Works Department or by health officials.

    This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering. 

    Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.

    Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.

    Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..

     

    There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.

    Diseases cannot be contained unless we provide good quality and  adequate quantity of water. Most of the world’s diseases can be prevented by considering this.

    Training our young minds towards creating sustainable water management systems would be the first step.

    Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.

    To leverage this opportunity even further, India needs to scale up in the same direction.

    Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.

    She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.

    She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.

    There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.

    After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.

    On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.

    He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.

    Never mind that the business is built on aggregation of small sellers who will not see half the profit .

    Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?

    Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.

    If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.

    Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.

    As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.

    But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?

    It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.

    However, this is a story of lopsided growth.

    The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.

    This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?

    It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.

    Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment. 

    What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.

    India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.

    The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?

     

    At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.

    Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.

    From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.

    The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.

    Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.

    Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.

    One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.

    If you think these are isolated examples, consider some larger data trends.

    The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.

    When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.

    However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.

    The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.

    The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.

    Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.

    So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.

    We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.

    It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.