Upcoming geological periods

With climate change ruling the environment discourse, the sudden warming of the Earth in contemporary times prompted an official expert group to present a recommendation to the International Geological Congress to declare the geological period beginning since 1950 as the Anthropocene epoch. Since 2009, the Working Group on the Anthropocene (WHA) has been working to set up a working model for the Anthropocene Epoch. The epoch would be said to mark the impact of modern civilization on the climate and environment of the Earth involving humankind’s impact on global climate.

The beginning of Anthropocene age, marked by the numerous nuclear tests and consequent detonations that had dispersed radioactivity in areas around the world, also would have to take into account for large-scale environmental effects caused by anthropogenic interventions such as plastic pollution, greenhouse gas emissions, environmental contamination, and several other effects. Although the changes have been said to be initiated, statigraphers cannot yet come to a conclusion on bringing changes to the geological time scale.

Talk of the Anthropocene epoch is taking place because the current epoch – the Holocene – is marked by largely stable climate over the last 12,000 years since the previous age – the Ice Age.

The Holocene epoch is the period within which all of human civilization developed, and many experts are calling for its end with large scale changes such as greenhouse gas emissions, sea level rise, development activities, destruction of ecosystems, and the extinction many animal species (Carrington, 2017), which should alter the planet to an extent similar in scale to a change in epoch, and is said to be principally manifested in its genesis as climate change. Human civilization has so far inhabited a planet that has seen no massive planetary shifts in climate, in a period of relative stability.

However, the changes that human intervention have initiated are so aberrant that it is expected that climate change will not be the only defining feature of this epoch, with the introduction of an incredible array of chemicals in the soil, water and atmosphere; and incredible changes to the geomorphology of the planet; that could change the entire biosphere at a pace not witnessed before in the history of life on Earth.

On the other hand, it is argued that new basis of planetary order could arise, such as the electronic medium, which for now is in the realm of popular science. The full effects of anthropogenic changes on the geology of the planet could have rather serious and tragic implications that until now have not been fully charted. However, based on trends in changes in geological periods, we can get a sense of one important aspect of the effects of anthropogenic interventions on transitional aspects of geological periods – climate change.


Climate Change and Geological Periods

The driving aspect of climate change is the rising up of the Earth’s temperatures by the accumulation of greenhouse gases, primarily CO2 in the atmosphere, which act to trap the solar heat that is reflected back from the Earth’s surface, leading to a rise in temperatures.

Although the Earth since its formation is said to be gradually cooling down cumulatively, in the more recent time scale since the Ice Age, temperatures have increased, although in the present Holocene epoch, they have remained quite stable in general. The comparative stability of plate tectonics in the last 50 million years allows geologists to better study geological periods since about this time.

These epochs thus fall within the broader period among geological periods called the Cenozoic Era. Generally the Earth has been cooling, and this follows a fairly warm period about 45 to 55 million years ago called the Eocene Optimum, when much of Antarctica was without an ice cover. The cooling process post the Eocene Optimum is said to have begun 34 million years ago during the Eocene-Oligocene boundary climate transition when due to the cooling of the Earth, an ice sheet had formed over Antarctica.

Atmospheric COduring this period is said to have fallen to below 750 ppm. Evidence from sedimentary cycles from the Ross Sea point towards glacial cycles between 34 to 31 million years (Galeotti et al., 2016).

Cenozoic

Fig: The Cenozoic Era among Geological Periods, which includes the recent epochs

However, within these epochal transitions, the Earth’s climate, including its temperature, showed wide variations. Going by fossil records, the Eocene Optimum displays evidence of an abundance of forest areas, with most species being species adapted to tropical conditions, although there were arid conditions as well.

In the Ice Age, although most species were those adapted to cold conditions, tropical species thrived in the lower latitudes. With changing climatic conditions over time, certain species adapted while others went extinct.

Climatic variations could be due to conditions on earth itself or due to extra-terrestrial reasons such as due to changes in the amount of heating provided by the Sun. Geological evidence however, makes a strong case for Earth’s own volition rather than in extra-terrestrial reasons. Climatic patterns have largely fluctuated somewhat even though the long term trend has been the cooling down of Earth.

For example, climate during the Ice Age was particularly unstable, with frequent temperature fluctuations ranging more than 10 degrees Fahrenheit. The fluctuations largely follow changes in the tilt of the Earth’s axis and in the shape formed when the Earth orbits the Sun.

These are defined as Milankovitch Cycles, and are caused by the gravitational forces in the Solar System caused by the Moon and other planets besides the Sun. However, Milankovitch Cycles do not result in as large of fluctuations in temperature as were said to have occurred over geological periods, unless there were factors on Earth, those influencing climatic patterns that would aggravate the warming effect. The Earth exhibits certain intrinsic characteristics that lead to a rise in temperatures and a change in climatic patterns between geological periods and within them, over time.

Due to bubbles containing air from the Ice Age preserved in glaciers in the Arctic and Antarctic, it is possible to evaluate the atmospheric composition of the period with certain accuracy. Evaluation of earlier geological periods is more difficult, and the composition of marine sediments as affected by oceanic CO2and studying its effect on fossilized leaves of plants from these geological periods are some examples of methods used to evaluate the atmospheric composition in these geological periods.

Although investigations reveal that the Earth’s overall cooling process has been accompanied by a gradual decrease in CO2 levels along with certain other greenhouse gases, their levels have fluctuated in between that have caused significant changes in the Earth’s climatic patterns.

CO2 levels during the extremely warm Eocene Optimum were said to be between 2,000 and 3,000 ppm while those for the much colder Ice Age are said to be about 200 ppm (Menke, 2014). In pre-industrial times in the current Holocene epoch, CO2 levels had reached to about 280 ppm. By 2016, the COlevels reached to over more than 400 ppm (Jones, 2017).

However, atmospheric CO2 is not the only determining factor in raising Earth’s temperatures. Other factors can also be involved such as other greenhouse gases, amounts of ice cover and persistent cloud cover, which reflect sunlight back into space, and other possible concomitants can be the amounts of areas on the Earth covered by forests and oceans, which absorb heat.

Although evidence is altogether unsatisfactory on whether greenhouses gases alone could have caused the high global temperature levels in the Eocene Optimum, rising to about 5 to 6 degrees Celsius above previous levels (De Conto et al., 2017), global climatic models suggest that such high levels of warming could only have occurred due to the proliferation of greenhouse gases.

This rise in temperatures during the Eocene Optimum eventually led to the melting of the polar ice caps, such that sea levels rose to 200 feet above previous levels (Menke, 2014). Data suggests that climate change, although slow to begin, could accelerate over time if left unchecked. A rise in greenhouse gas levels similar to previous warm epochs such as the Eocene Optimum, which was the warmest period in the Earth’s recent history, could be devastating for most living things not adapted to warm climates.

It is said that during the Eocene Optimum, cold-blooded creatures like crocodiles inhabited areas close to the polar regions such as present-day Greenland. Though there is uncertainty as regards the exact levels of CO2 during the geological period when the polar ice caps had largely melted, the rate of increase in CO2 levels can be determined based on cumulative estimates.

Modern levels of atmospheric CO2 are accelerating at a pace unprecedented in the history of previous geological periods. The annual rate of increase for atmospheric carbon di oxide levels in the late 1950’s was 0.7 ppm/ year, while between the years 2005 to 2014 this had increased to 2.1 ppm/ year.

Although the effects are slow to be realized, with the IPCC predicting the possibility of a rise in global temperatures by 3 degrees Celsius by 2080 (Jones, 2017), the longer term effects with an increasing rate of acceleration in global atmospheric COlevels could have devastating effects on the Earth’s climatic patterns.

A full estimate of the effects of this process cannot be definitively ascertained due to the vastness of the scope, but there is no doubt that this uncertainty adds to the need to form better estimates of the effects, which are extremely difficult to define and attribute. Although we know that global CO2 levels annually are accelerating, there cannot be any estimates over how the trends are going to play out in the coming years. Without a global concerted effort towards checking carbon emissions, humankind is exploring uncharted territory. The in depth study of geological periods although should help us better understand the effects of climate change.

 


Share is Caring, Choose Your Platform!

Recent Posts


  • In a diverse country like India, where each State is socially, culturally, economically, and politically distinct, measuring Governance becomes increasingly tricky. The Public Affairs Index (PAI 2021) is a scientifically rigorous, data-based framework that measures the quality of governance at the Sub-national level and ranks the States and Union Territories (UTs) of India on a Composite Index (CI).


    States are classified into two categories – Large and Small – using population as the criteria.

    In PAI 2021, PAC defined three significant pillars that embody GovernanceGrowth, Equity, and Sustainability. Each of the three Pillars is circumscribed by five governance praxis Themes.

    The themes include – Voice and Accountability, Government Effectiveness, Rule of Law, Regulatory Quality and Control of Corruption.

    At the bottom of the pyramid, 43 component indicators are mapped to 14 Sustainable Development Goals (SDGs) that are relevant to the States and UTs.

    This forms the foundation of the conceptual framework of PAI 2021. The choice of the 43 indicators that go into the calculation of the CI were dictated by the objective of uncovering the complexity and multidimensional character of development governance

    The Equity Principle

    The Equity Pillar of the PAI 2021 Index analyses the inclusiveness impact at the Sub-national level in the country; inclusiveness in terms of the welfare of a society that depends primarily on establishing that all people feel that they have a say in the governance and are not excluded from the mainstream policy framework.

    This requires all individuals and communities, but particularly the most vulnerable, to have an opportunity to improve or maintain their wellbeing. This chapter of PAI 2021 reflects the performance of States and UTs during the pandemic and questions the governance infrastructure in the country, analysing the effectiveness of schemes and the general livelihood of the people in terms of Equity.

    Growth and its Discontents

    Growth in its multidimensional form encompasses the essence of access to and the availability and optimal utilisation of resources. By resources, PAI 2021 refer to human resources, infrastructure and the budgetary allocations. Capacity building of an economy cannot take place if all the key players of growth do not drive development. The multiplier effects of better health care, improved educational outcomes, increased capital accumulation and lower unemployment levels contribute magnificently in the growth and development of the States.

    The Pursuit Of Sustainability

    The Sustainability Pillar analyses the access to and usage of resources that has an impact on environment, economy and humankind. The Pillar subsumes two themes and uses seven indicators to measure the effectiveness of government efforts with regards to Sustainability.

     

    The Curious Case Of The Delta

    The Delta Analysis presents the results on the State performance on year-on-year improvement. The rankings are measured as the Delta value over the last five to 10 years of data available for 12 Key Development Indicators (KDI). In PAI 2021, 12 indicators across the three Pillars of Equity (five indicators), Growth (five indicators) and Sustainability (two indicators). These KDIs are the outcome indicators crucial to assess Human Development. The Performance in the Delta Analysis is then compared to the Overall PAI 2021 Index.

    Key Findings:-

    1. In the Large States category (overall), Chhattisgarh ranks 1st, followed by Odisha and Telangana, whereas, towards the bottom are Maharashtra at 16th, Assam at 17th and Gujarat at 18th. Gujarat is one State that has seen startling performance ranking 5th in the PAI 2021 Index outperforming traditionally good performing States like Andhra Pradesh and Karnataka, but ranks last in terms of Delta
    2. In the Small States category (overall), Nagaland tops, followed by Mizoram and Tripura. Towards the tail end of the overall Delta ranking is Uttarakhand (9th), Arunachal Pradesh (10th) and Meghalaya (11th). Nagaland despite being a poor performer in the PAI 2021 Index has come out to be the top performer in Delta, similarly, Mizoram’s performance in Delta is also reflected in it’s ranking in the PAI 2021 Index
    3. In terms of Equity, in the Large States category, Chhattisgarh has the best Delta rate on Equity indicators, this is also reflected in the performance of Chhattisgarh in the Equity Pillar where it ranks 4th. Following Chhattisgarh is Odisha ranking 2nd in Delta-Equity ranking, but ranks 17th in the Equity Pillar of PAI 2021. Telangana ranks 3rd in Delta-Equity ranking even though it is not a top performer in this Pillar in the overall PAI 2021 Index. Jharkhand (16th), Uttar Pradesh (17th) and Assam (18th) rank at the bottom with Uttar Pradesh’s performance in line with the PAI 2021 Index
    4. Odisha and Nagaland have shown the best year-on-year improvement under 12 Key Development indicators.

    In the Scheme of Things

    The Scheme Analysis adds an additional dimension to ranking of the States on their governance. It attempts to complement the Governance Model by trying to understand the developmental activities undertaken by State Governments in the form of schemes. It also tries to understand whether better performance of States in schemes reflect in better governance.

    The Centrally Sponsored schemes that were analysed are National Health Mission (NHM), Umbrella Integrated Child Development Services scheme (ICDS), Mahatma Gandh National Rural Employment Guarantee Scheme (MGNREGS), Samagra Shiksha Abhiyan (SmSA) and MidDay Meal Scheme (MDMS).

    National Health Mission (NHM)

    • In the 60:40 division States, the top three performers are Kerala, Goa and Tamil Nadu and, the bottom three performers are Uttar Pradesh, Jharkhand and Bihar.
    • In the 90:10 division States, the top three performers were Himachal Pradesh, Sikkim and Mizoram; and, the bottom three performers are Manipur, Assam and Meghalaya.

     

    INTEGRATED CHILD DEVELOPMENT SERVICES (ICDS)

    • Among the 60:40 division States, Orissa, Chhattisgarh and Madhya Pradesh are the top three performers and Tamil Nadu, Telangana and Delhi appear as the bottom three performers.
    • Among the 90:10 division States, the top three performers are Manipur, Arunachal Pradesh and Nagaland; and, the bottom three performers are Jammu and Kashmir, Uttarakhand and Himachal Pradesh

     

    MID- DAY MEAL SCHEME (MDMS)

    • Among the 60:40 division States, Goa, West Bengal and Delhi appear as the top three performers and Andhra Pradesh, Telangana and Bihar appear as the bottom three performers.
    • Among the 90:10 division States, Mizoram, Himachal Pradesh and Tripura were the top three performers and Jammu & Kashmir, Nagaland and Arunachal Pradesh were the bottom three performers

     

    SAMAGRA SHIKSHA ABHIYAN (SMSA)

    • West Bengal, Bihar and Tamil Nadu were the top three States amongst the 60:40 division States; while Haryana, Punjab and Rajasthan appeared as the bottom three performers
    • In the case of 90:10 division States, Mizoram, Assam and Tripura were the top three performers and Nagaland, Jammu & Kashmir and Uttarakhand featured as the bottom three

     

    MAHATMA GANDHI NATIONAL RURAL EMPLOYMENT GUARANTEE SCHEME (MGNREGS)

    • Among the 60:40 division States, the top three performers are Kerala, Andhra Pradesh and Orissa and the bottom three performers are Madhya Pradesh, Jharkhand and Goa
    • In the 90:10 division States, the top three performers are Mizoram, Sikkim and Nagaland and the bottom three performers are Manipur and Assam