Water staircases in seas:-
Internal waves, which move vertically through the ocean, can sometimes pass through “water staircases,” which are steplike variations of density of water, in such as manner as to churn up the underlying warm, salty water, thereby increasing the temperature of the top, cooler layers. This suggests a possible mechanism by which the upper layers of the Arctic Ocean warm up, causing the ice to melt.
Water staircases are steplike variations of density of water due to steplike changes in temperature and salinity. Though internal waves exist where the density gradually increases with depth, they cannot propagate where the density is uniform, for instance, within the steps of the staircase.
Ocean warming
The Arctic Ocean has inflows coming from the Pacific Ocean and Atlantic Ocean. In this, the top layers consist of cooler and less saline water and below that is a layer of water coming from the Atlantic Ocean which is more saline and warmer, too. The effect of salinity wins over that of temperature and so, though the water below is warmer, it is heavier than the cooler, less saline layer on top..
“Warm, but salty water — ultimately originating from the Atlantic Ocean resides near the bottom of the Arctic Ocean. If turbulence could somehow mix this water with that above, then, eventually, the surface could warm more rapidly, and this would increase the rate of sea-ice melt.
The internal movement of water within seas from cold, dense regions to warmer, lighter ones constitutes the largest observable waves. These can stretch to wavelengths of over a hundred metres and travel from top to bottom.
Like normal water waves, these propagate due to a variation of density of the water and not when there is constant density. In a staircase-like formation, though the density is constant within the step, there is a jump in density from one step to another. Hence, the wave’s energy can be transmitted from one interface to another.
Though not predominant, thermohaline staircases do occur in many places. “As well as the Arctic, they are persistent in the Caribbean Sea. This is due to surface heating and evaporation resulting in warm salty water overlying colder fresher water. They do not exist where there are strong currents, as in the Antarctic, which have enough energy to stir up any staircases that might form.
Selective filtering
So the scenario is that when an internal wave strikes a density staircase, a part of its energy may be transmitted through the staircase. In other words, density staircases in the ocean can act to reflect short wavelength internal waves and transmit longer wavelength waves. This is analogous to the selective transparency of glass windows on modern buildings that have multilayered coatings designed to reflect red light (long wavelength light) and allow green-blue (shorter wavelength) light through
On reaching the ocean floor, the long-wavelength waves which have been transmitted cause turbulence and mix up the water. The warm waters then rise to the top and warm the top layers.
“Strong storms passing over the Arctic typically generate waves on the order of 10-100 km horizontal scale. As sea-ice retreats and storms passing over the increasingly non-ice-covered ocean generate more and more waves, it seems that still a substantial fraction of this energy can transmit to depth, and this may consequently cause mixing at depth that could bring those deep warm (but salty) waters closer to the surface. The filtering that my theory predicts suggests that the energy transmitted to depth might be moderately smaller than one would expect in the absence of density staircases. But, for the most energetic waves — those transmitted by storms — the decrease is not substantial.
40 million Indians at risk from rising sea levels: UN report
Nearly 40 million Indians will be at risk from rising sea levels by 2050, with people in Mumbai and Kolkata having the maximum exposure to coastal flooding in future due to rapid urbanisation and economic growth, according to a UN environment report.
The ‘Global Environmental Outlook (GEO-6): Regional Assessments’ said the worst impacts of climate change are projected to occur in the Pacific and South and South-East Asia.
It said focussing on the population at risk from sea-level rise by 2050, seven of the 10 most vulnerable countries worldwide are in the Asia Pacific region.
India tops chart
India tops the chart with nearly 40 million people in the country projected to be at risk from rising sea levels, followed by more than 25 million in Bangladesh, over 20 million in China and nearly 15 million in the Philippines.
It said changes in settlement patterns, urbanisation and socio-economic status in Asia have influenced observed trends in vulnerability and exposure to climate extremes.
The report said in many coastal areas, growing urban settlements have also affected the ability of natural coastal systems to respond effectively to extreme climate events, rendering them more vulnerable.
“Some countries, such as China, India and Thailand, are projected to face increased future exposure to extremes, especially in highly urbanised areas, as a result of rapid urbanisation and economic growth,” it said.
It listed Mumbai and Kolkata in India, Guangzhou and Shanghai in China, Dhaka in Bangladesh, Yangon in Myanmar, Bangkok in Thailand, and Ho Chi Minh City and Hai Phong in Vietnam as projected to have the largest population exposure to coastal flooding in 2070.
The report, published ahead of the UN Environment Assembly taking place in Nairobi next week, said the worst impacts of climate change are projected to occur in the Pacific and South and Southeast Asia.
In 2011, six of the ten countries most vulnerable to climate change worldwide were in Asia and the Pacific.
On coastal areas highly exposed to cyclones and typhoons, the poor tend to be more exposed to natural disasters because they live on land open to hazards.
Combined impact
Evidence suggests that climate change and climate variability and sea-level rise will exacerbate multi-dimensional poverty in most developing countries.
By 2050, areas of storm surge zones are expected for Bangladesh, China, India, Indonesia, and the Philippines, with a combined total of over 58 million people at risk.
The UN report further said global urban populations are projected to increase by 2.5 billion by 2050, with nearly 90 per cent of the increase in Asia and Africa.
India fifth largest producer of e-waste: study
India, which has emerged as the world’s second largest mobile market, is also the fifth largest producer of e-waste, discarding roughly 18.5 lakh tonnes of electronic waste each year, a study says.
Telecom equipment alone accounts for 12 per cent of the e-waste, a joint study by Assocham-KPMG said.
Matter of concern
The rising levels of e-waste generation in India have been a matter of concern in recent years. With more than 100 crore mobile phones in circulation, nearly 25 per cent end up in e-waste annually, it said.
The Ministry of Environment, Forest and Climate Change has notified e-waste management rules, 2016, in which producers are for the first time covered under extended producers’ responsibility (EPR).
Waste collection target
The rules prescribe a waste collection target of 30 per cent waste generated under EPR for the first two years, progressively going up to 70 per cent in the seventh year of the rule.
The rules prescribe stringent financial penalties for non-compliance. However, the study said the unorganised sector in India is estimated to handle around 95 per cent of the e-waste produced in the country.
Given the huge user base and vast reach of telecom in India, it is practically difficult and expensive for the handset manufacturers to achieve the targets prescribed in the rules from first year, the study added.
ISRO plans to test air-breathing propulsion system
After successfully testing a technology demonstrator of a reusable launch vehicle, Indian Space Research Organisation (ISRO) is planning to test an air-breathing propulsion system, which aims to capitalise on the oxygen in the atmosphere instead of liquefied oxygen while in flight.
Generally, vehicles that are used to launch satellites use combustion of propellants with oxidiser and fuel. The air-breathing propulsion system aims at using oxygen present in the atmosphere up to 50 km from the earth’s surface to burn the fuel stored in the rocket.
Lower lift-off mass
The system, when implemented, would help in reducing the lift-off mass of the vehicle since liquefied oxygen need not be carried on board the vehicle. This would also help increasing the efficiency of the rocket and also make it cost-effective.
The new propulsion system, once mastered, would complement ISRO’s aim to develop a reusable launch vehicle that would have longer flight duration. The system, involving the scramjet engine, would become crucial while sending up the spacecraft.
ISRO is now evolving and testing various technologies to bring down the cost of launch vehicles. The national space agency has earlier developed rockets that can send multiple satellites in a single mission.
Ancient Mars hosted habitable environments: study
Scientists have found evidence for widespread buried deposits of iron- and calcium-rich carbonates on Mars, which suggests that the red planet once hosted habitable environments with liquid water.
Identification of these ancient carbonates and clays on Mars represents a window into history when the climate on Mars was very different from the cold and dry desert of today.
Carbonates beneath the surface of Mars point to a warmer and wetter environment in that planet’s past. The presence of liquid water could have fostered the emergence of life.
Subject of an energetic debate
The fate of water on Mars has been energetically debated by scientists because the planet is currently dry and cold, in contrast to the widespread fluvial features that etch much of its surface.
Scientists believe that if water did once flow on the surface of Mars, the planet’s bedrock should be full of carbonates and clays, which would be evidence that Mars once hosted habitable environments with liquid water.
And the carbon dioxide
Researchers have struggled to find physical evidence for carbonate-rich bedrock, which may have formed when carbon dioxide in the planet’s early atmosphere was trapped in ancient surface waters. They have focused their search on Mars’ Huygens basin.
This feature is an ideal site to study carbonates because multiple impact craters and troughs have exposed ancient, subsurface materials where carbonates can be detected across a broad region, researchers have said.
Outcrops in the 450-km wide Huygens basin contain both clay minerals and iron- or calcium-rich carbonate-bearing rocks.
Carbonate-bearing rocks
The study has highlighted evidence of carbonate-bearing rocks in multiple sites across Mars, including Lucaya crater, where carbonates and clays 3.8 billion years old were buried by as much as 5 km of lava and caprock.
The researchers identified carbonates on the planet using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), which is on the Mars Reconnaissance Orbiter. This instrument collects the spectral fingerprints of carbonates and other minerals through vibrational transitions of the molecules in their crystal structure that produce infrared emission.
Geologic features
The team paired CRISM data with images from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) on the orbiter, as well as the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor, to gain insights into the geologic features associated with carbonate-bearing rocks.
The extent of the global distribution of martian carbonates is not yet fully resolved and the early climate on the red planet is still subject of debate.
However, this study is a forward step in understanding the potential habitability of ancient Mars.
Recent Posts
Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.
Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.
The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.
Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.
In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.
Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.
“Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.
India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.
With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.
They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.
India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.
As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices
The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).
The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.
Here is an approximate break-up (in Rs):
a)Base Price | 39 |
b)Freight | 0.34 |
c) Price Charged to Dealers = (a+b) | 39.34 |
d) Excise Duty | 40.17 |
e) Dealer Commission | 4.68 |
f) VAT | 25.35 |
g) Retail Selling Price | 109.54 |
Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.
So the question is why government is not reducing the prices ?
India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.
However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.
That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.
Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.
Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.
But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.
Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.
This can pose a significant environmental and health threat.
In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.
A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.
As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.
For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.
It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.
Traditionally, engineering and public health have been understood as different fields.
Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.
Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.
India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.
The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.
In India, public health engineering is executed by the Public Works Department or by health officials.
This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering.
Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.
Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.
Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..
There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.
Diseases cannot be contained unless we provide good quality and adequate quantity of water. Most of the world’s diseases can be prevented by considering this.
Training our young minds towards creating sustainable water management systems would be the first step.
Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.
To leverage this opportunity even further, India needs to scale up in the same direction.
Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.
She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.
She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.
There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.
After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.
On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.
He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.
Never mind that the business is built on aggregation of small sellers who will not see half the profit .
Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?
Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.
If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.
Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.
As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.
But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?
It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.
However, this is a story of lopsided growth.
The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.
This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?
It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.
Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment.
What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.
India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.
The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?
At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.
Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.
From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.
The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.
Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.
Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.
One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.
If you think these are isolated examples, consider some larger data trends.
The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.
When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.
However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.
The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.
The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.
Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.
So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.
We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.
It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.