By Categories: Environment

Not being residentially inhabited by human populations and instead being a place where largely scientific research is the mainstay, one would expect Antarctic biodiversity to be more protected than biodiversity in other, more populated regions of the world. However, this may not be the case for Antarctic biodiversity.

The Status of Antarctic Biodiversity

A study published in 2017 in the journal PLOS Biology by a team led by Steven L. Chown and scientists from Monash University, Australia has brought Antarctic biodiversity into question, largely thought by many to be a safe zone. The study undertook to make a comparison of the conditions of Antarctic biodiversity and how it has been managed with that of other places globally using the Convention on Biological Diversity (CBD) Aichi’s targets as standard. The Aichi targets are included under the CBD’s 2011-2020 Strategic Plan for Biodiversity to assess global biodiversity loss. However, they had never been assessed for Antarctic biodiversity and that of the Southern Ocean.

In the study’s assessment, it was found that the difference in the status of biodiversity between Antarctic biodiversity and biodiversity in the other regions elsewhere in the world were similar. Although Antarctic biodiversity was doing well in certain areas such as the management of invasive species, in some other areas such as in bio-prospecting regulations and the management of protected areas Antarctic biodiversity was not doing as well as some other areas around the world. The overall results for Antarctic biodiversity were largely similar to other areas in the world assessed in terms of Aichi targets (PLOS, 2017).

The study also noted that although Antarctica is doing well in terms of the management of invasive species, rising concerns include increasing numbers of tourists going to Antarctica and overfishing. However, even greater threats can be said to be looming on the horizon, such as climate change, with warmer oceans and melting ice and also transnational pollution. Peter Stoett, professor of political science in Concordia University, Canada has reportedly said that we must go beyond the Antarctic Treaty System that looks to further scientific research in Antarctica, and establish a governance system for protecting biodiversity in the Antarctic and the Southern Ocean.

Climate Change and Antarctic Biodiversity

With anthropogenic effects on Antarctic biodiversity likely to be a prominent issue in the future, anthropogenic influences such as climate change and pollution can be important issues that portend Antarctica’s future. Antarctic biodiversity in terms of climate change can be greatly influenced by the patterns of the spatial structures of the environment.

A study by Convey et al. (2014) could be useful in this regard, as it synthesized contemporary epistemology on variability of environmental patterns across Antarctic biomes, be it terrestrial, freshwater or marine biomes. Out of these biotic patterns were observed, which led to the inference that the most important concomitant of the distribution of biodiversity in Antarctic terrestrial communities is the presence of liquid water, which was vastly determined by the intensity of solar irradiance. The distribution of biodiversity was also found to be significantly influenced by the historical antecedence of the development of an area, and also by natural barriers imposed by the geography of an area.

Convey et al. consider Antarctic biodiversity in terms of both the terrestrial Antarctic environment and also the marine environment comprising the Southern Ocean, which is comprised of the southern parts of the Atlantic, Pacific and the Indian Oceans. Antarctic terrestrial ecosystems can include polar deserts, including Antarctica’s ice sheet, and also grasslands, eutrophic ponds, and freshwater and hypersaline lakes. Antarctic marine ecosystems include the shallow coastal region as well the ocean depths where some habitats can be incredibly diverse and some can be quite featureless. Not much however, is known of Antarctic deep ocean biodiversity.

Terrestrial ecosystems are dominated by ice cover, and about 0.34 per cent of Antarctica is ice-free, although these regions tend to be isolated from each other by a few meters to hundreds of kilometers. Life in the ice in Antarctica develops mainly in the summer, in the form of organisms such as algae. Other than penguins, many sub-glacial communities of microorganisms also exist in Antarctica, although the polar deserts are dominated with moss-habitat communities.

Assessing past climate change in Antarctica is difficult, and there is a limited account of past fossil history in Antarctica. The discontinuity of ice-free ground makes the presence of biological features characterized by continuous gradients of environmental features such as water or temperature limited. The variations are much lesser for the marine Antarctic environment, but can show greater variation dependant on other variations such as precipitation, making better examinations of Antarctic biodiversity in terms of wider spatial variables possible in Antarctic marine environments.

In terrestrial ecosystems in Antarctica, although they are isolated in distribution, assessments can be made of certain abiotic factors such as soil structure and chemistry and also the availability of water, which can have inter-specific effects. Thus an analysis of Antarctic terrestrial ecosystems in terms of the spatial factors of climate change is possible in terms of abiotic environmental variations.

Abiotic factors that can influence Antarctic biodiversity can include solar irradiance, temperature, availability of water, presence of ice and snow, soil characteristics and soil chemistry in terms of nutrients, productivity, etc. A decreasing trend of Antarctic biodiversity can be observed in the transition from sub- to in-land regions of the Antarctic continent, which in turn can present numerous smaller-scale spatial variations. Broad spatial patterns however, cannot completely account for the geographical history and bio-geographic isolation of individual ecological niches of terrestrial regions in Antarctica. However, observations point towards the fact that Antarctic biodiversity decreases along with the increase in the extremity of the abiotic environment.

Climate change thus can be explored as a set of possibilities resulting from a warming planet. It is likely that with a warming planet, habitats for Antarctic species that are adapted for more temperate climates can shift somewhat towards the poles. Climate change could also lead to an increase in the habitat ranges of indigenous species. However, compounding efforts towards mitigation of climate change is the fact that human activities and their effects are most at the ice-free regions of terrestrial Antarctica. This can for example, severely effect soil compaction and also have impacts on the ecosystems of contained Antarctic biodiversity. There is also the concomitant problem of pollution, which although much lower in Antarctica than elsewhere, it can have significant local impacts in isolated Antarctic ecosystems.

A number of site-specific studies are thus necessary to understand Antarctic biodiversity, given the incredible amount of endemism characteristic of terrestrial Antarctic biodiversity. With the coming of climate change, strong environmental factors are set to combine with great heterogeneity in habitats, especially terrestrial Antarctic habitats. In this special care is required in the management of Antarctic biodiversity and ecosystems, which requires a cohesive and site-specific approach.


 

Share is Caring, Choose Your Platform!

Receive Daily Updates

Stay updated with current events, tests, material and UPSC related news

Recent Posts

  • Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.

    Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.

    The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.

    Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.

    In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.

    Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.

    “Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.

    India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.

    With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.

    They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.

    India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.

    As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices

    The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).

    The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.

    Here is an approximate break-up (in Rs):

    a)Base Price

    39

    b)Freight

    0.34

    c) Price Charged to Dealers = (a+b)

    39.34

    d) Excise Duty

    40.17

    e) Dealer Commission

    4.68

    f) VAT

    25.35

    g) Retail Selling Price

    109.54

     

    Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.

    So the question is why government is not reducing the prices ?

    India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.

    However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.

    That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.

    Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.

    Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.

    But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.

  • Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.

    This can pose a significant environmental and health threat.

    In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.

    A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.

    As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.

    For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.

    It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.

    Traditionally, engineering and public health have been understood as different fields.

    Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.

    Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.

     

    India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.

    The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.

    In India, public health engineering is executed by the Public Works Department or by health officials.

    This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering. 

    Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.

    Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.

    Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..

     

    There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.

    Diseases cannot be contained unless we provide good quality and  adequate quantity of water. Most of the world’s diseases can be prevented by considering this.

    Training our young minds towards creating sustainable water management systems would be the first step.

    Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.

    To leverage this opportunity even further, India needs to scale up in the same direction.

    Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.

    She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.

    She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.

    There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.

    After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.

    On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.

    He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.

    Never mind that the business is built on aggregation of small sellers who will not see half the profit .

    Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?

    Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.

    If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.

    Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.

    As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.

    But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?

    It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.

    However, this is a story of lopsided growth.

    The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.

    This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?

    It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.

    Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment. 

    What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.

    India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.

    The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?

     

    At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.

    Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.

    From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.

    The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.

    Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.

    Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.

    One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.

    If you think these are isolated examples, consider some larger data trends.

    The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.

    When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.

    However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.

    The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.

    The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.

    Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.

    So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.

    We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.

    It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.