A tale from the banks of Ganga:-
Winters are extremely hectic for Sushma Patel, a vegetable grower in Uttar Pradesh’s Chunar town. Her farm is in the fertile plains of Ganga where people grow three crops a year. But this is the only season when she can grow vegetables. And before that, she needs to manually dig out shreds of plastic and wrappers from her one-hectare (ha) farm. “This is all because of the nullah,” she says, pointing at an open drain that runs through her field, carrying sewage from the neighbourhood to the Ganga. “Every monsoon, the drain overflows and inundates the field with a thick, black sludge and plastic debris. We cannot even go near the field as the stench of sewage fills the air,” she says. But Patel has no one to complain to as this is the way of life for most people in this ancient town.
About 70 per cent of the people in Chunar depend on toilets that have on-site sanitation, such as septic tanks and pits. In the absence of a proper disposal or management system, people simply dump the faecal sludge and septage in storm water drains running across the town. These 27 drains eventually discharge the untreated sewage into the Ganga and its tributary, the Jargo. On the way, they contaminate the groundwater and farmlands.
Such rampant discharge of untreated sewage into the Ganga prompted the National Green Tribunal (NGT) to issue show cause notices on May 18, 2016, to Chunar and four other municipalities —Mirzapur, Bhadohi, Fatehpur and Hastinapur—in Uttar Pradesh. NGT had asked the municipa lities to submit their plans to prevent untreated sewage flowing into the river.
Officials are since scrambling to abate the flow of sewage into the Ganga. “We have identified 10 ha along the Ganga to set up a sewage treatment plant (STP) with a capacity of treating 8 million litres of sewage a day (MLD). At present, Chunar generates 6 MLD of domestic sewage which goes directly into the river untreated,” says Shamsher Singh, sanitation inspector of Chunar Municipal Corporation. “We also plan to set up pumping stations at four places. These will intercept the drains and send the sewage to the proposed STP,” Singh says. But there is a problem. The town is surrounded by hills, which makes transportation of sewage to the proposed STP difficult. For instance, a huge drain passes through Aawas Colony, located at the foot of a hill. The municipal council plans to set up a pumping station along the drain. But it is not sure whether the station will be able to pump the sewage across the hill to the proposed STP.
Chunar, Mirzapur, Bhadohi, Fatehpur and Hastinapur are not the only towns along the Ganga struggling to manage their faecal load. Researchers with Delhi-based non-profit Centre for Science and Environment (CSE) say a major portion of the sewage generated by all the settlements along the 2,500-km-long bank of the Ganga ends up in the river—without any treatment.
The sheer volume of the untreated sewage flowing into the Ganga can be gauged from the fact that 25 per cent of the 400 million people living along it depend on on-site sanitation; there are at least 18 million septic tanks and 10 million pit latrines around the main stream of the Ganga, according to the Census 2011. More often than not people dispose of faecal sludge from these tanks and pits without any treatment.
The Report:-
A report on the pollution load in the Ganga, prepared by the Central Pollution Control Board (CPCB) in 2013, states that more than 6,087 MLD of wastewater flows into the Ganga from 138 drains. Experts say domestic sewage is a major constituent of this wastewater. The five states through which the main stream of the Ganga flows— Uttarakhand, Uttar Pradesh, Bihar, Jharkhand and West Bengal—have the capacity to treat only 1,208 MLD of sewage. Not to mention the Ganga is also a receptacle of 501 MLD of industrial wastewater.
The situation is only going to get worse with the implementation of Swachh Bharat Mission, the flagship programme of the Union government that aims to achieve an open defecation-free India by October 2, 2019. Under the mission, the government plans to construct 1.52 million toilets in rural areas along the Ganga and 1.45 million toilets (this includes private and public toilets) in cities that dot the river banks. These toilets will be built with four on-site sanitation technologies—septic tank, twin pits, biotoilet or biodigester.
This means by 2019, over 30 million tanks or pits would have been dug along the Ganga.
A back-of-the-envelope calculation by CSE shows these tanks and pits will produce 180 MLD of faecal sludge and septage. In the absence of a proper management system, this waste will eventually find its way into the Ganga. Pollution concentration in 180 MLD of septage is equivalent to that of 6,000 MLD of sewage.
The finding of CSE is alarming because the impact of the increasing number of toilets with- out any provision to treat the sludge is palpable across the Ganga. The level of faecal coliform, which indicates the extent of excreta in water, is increasing in the Ganga, and goes beyond the acceptable limit as the river crosses Kanpur in Uttar Pradesh, states the CPCB report. “High coliform levels make the water unsuitable for bathing and drinking,” says Javier Mateo Sagasta, senior researcher with the International Water Management Institute (IWMI), India.
“Unfortunately, faecal sludge and septage management do not find a mention in sanitation programmes like Swachh Bharat Mission,” says Suresh Kumar Rohilla, programme director of urban water management unit at CSE.
The load of faecal sludge and septage from millions of toilets, which are being installed along the Ganga under Swachh Bharat Mission, may defeat the government’s ambitious Namami Gange (National Mission for Clean Ganga).
Though the mission has identified varied projects, right from modernisation of ghats to construction of toilets and STPs in 118 target towns and cities, to arrest pollution in the river, it too gives faecal sludge and septage management a miss. “We plan to set up STPs to take care of sewage as well as faecal sludge,” says Shashi Shekhar, secretary with the Union Ministry of Water Resources, River Development and Ganga Rejuvenation. As of now, Namami Gange focuses on treatment of sewage, that too only from class-1 cities (that have over 100,000 population).
So far, the Atal Mission for Rejuvenation and Urban Transformation (AMRUT) is the only programme that requires cities to submit sewage and septage management plan. But it fails on two counts. First, AMRUT is restricted to class-1 cities. Second, it monitors urban local bodies’ performance based on their sewerage coverage. This discourages the authorities to prepare septage management plan.
“All Central, state and local programmes should recognise faecal waste management as a priority action area along the ongoing efforts to achieve healthy and clean cities in the Ganga basin,” says Rohilla. This is particularly important because a survey of cities along the Ganga shows that the authorities have miserably failed to manage their faecal waste.
Between October and November, CSE researchers visited 10 small- and medium-sized cities in Uttar Pradesh, Bihar and West Bengal that provide a snapshot of settlements across the Ganga basin. And the findings are startling. Of the 10 town and cities surveyed, only two (Ramnagar and Bijnor) have sewer lines. But they defeat the purpose as the authorities are yet to set up STPs. At least 60 per cent households in all the 10 towns and cities have toilets with on-site sanitation. But faecal sludge from these facilities are randomly dumped in vacant land, open drains, landfills and near water bodies. In West Bengal’s Bansberia and Bongaon cities, the authorities are in a fix. Almost all households in these cities have built toilets under Swachh Bharat Mission. “We have no idea how to dispose of the enormous volume of sludge these tanks and pits will produce in the coming years,” says Jagabandhu Saha, an official with Bongaon municipality.
Te tale of Lose-lose situation:-
In Uttar Pradesh’s Ramnagar town, 60-70 per cent households are connected to the sewer lines. Between November and June, when people in the region grow wheat, the irrigation department diverts the untreated sewage to farmers after diluting it. In fact, the irrigation department has set up a sewage pumping station and laid pipelines for this purpose. The urban local body has a vacuum tanker for cleaning out the septic tanks and pits. But it has been used only five to six times in two years as most septic tanks are inaccessible and emptied manually. More often than not, the faecal sludge is dumped in nearby fields and low-lying areas, from where it finds its way into the Ganga.
The situation is similar in the state’s Gangaghat town. Since the only vacuum tanker owned by the urban local body is too big to enter the narrow lanes, people contact private septage haulers from Kanpur. Residents say the tankers on their way back dump the untreated sewage at Railway Khanti, a low-lying area, or in the Chamak Ganga, a tributary of the Ganga whose flow has now been blocked due to construction activities. Years of dumping of faecal sludge has turned Railway Khanti and the Chamak Ganga into sewage pools.
Census 2011 states that some parts of Chunar are connected to sewer lines, but CSE researchers could not find any.
In Bijnor, people depend on five private septage haulers for emptying the tanks. Farmers have tied up with these tankers to provide them sludge, which they use as manure. The town is now shifting towards managing faecal waste in a centralised manner. The authorities have laid sewer lines and are setting up an STP. “Pollution in the Ganga can be fixed only through effective management of STPs,” says I P Singh, executive officer of Bijnor urban local body, adding that small STPs are cost-effective and efficient.
In Bihar’s Katihar and Buxar cities, municipal corporations provide vacuum tankers to clean out the septic tanks, but their responsibility ends there. The vacuum tanker of Katihar dumps the faecal sludge in a landfill at Udama Rakha. Since the landfill does not have a protective lining to check percolation of leachate, septage increases the risk of groundwater contamination. In Buxar, the vacuum tanker dumps the faecal sludge in open drains or on vacant land in nearby Darapur and Ahrauli villages.
When CSE researchers visited Bodhgaya, sewer lines were being laid in the town. But since households are yet to be connected to the network, its urban local body continues to clean the septic tanks and dump the septage on agricultural fields, often without the consent of the farmer.
Though Bongaon is likely to achieve open defecation-free status by the end of December 2016, people here have constructed large pits instead of septic tanks. This increases the risk of groundwater contamination with faecal matter. The municipa lity dumps septage in landfills, located next to a pond. This heightens the contamination risk of both groundwater and surface water.
In two of the cities surveyed, efforts are under way to manage the faecal sludge. Consider Bihar’s Muzaffarpur city. Most households here have toilets with on-site sanitation, and a fertiliser company is cashing in on it. Sona Ganga Fertilizers procures about 8 per cent of the septage from Muzaffarpur. It then dries and composts the waste and sells the biocompost to farmers.
A similar initiative is under way in Bansberia in partnership with the municipality. The municipality collects septage from 47 per cent of its households and transports it to the faecal sludge treatment plant (FSTP), set up under public-private partnership in 2006. A private company, Greenery Biocompost and Animal Farming, which runs the FSTP, recycles the sludge and converts it into biocompost. The company sells 50 kg of the biocompost for Rs 850.
These initiatives show the economic value of faecal sludge and septage, which can be converted into soil conditioners, unlike sewage. In the process, they create employment and encourage resource recovery and recycle. But in the absence of funding, guidelines and expertise, most urban local bodies turn a blind eye to the potential of faecal sludge and septage.
There is enough evidence to show that faecal sludge and septage management (FSSM) is not only economical as compared to centralised sewerage system but can also be implemented quickly to make cities clean and healthy.
IWMI’s recent study analyses the cost of faecal waste management in all 2,367 cities in the five states along the Ganga. It says effective management of faecal sludge and septage generated in these cities will cost US $2.8 billion (about Rs 18,900 crore), whereas laying sewerage networks and STPs will cost six times more—a whopping $17.4 billion (about Rs 117,400 crore). Besides, installing the sewerage system takes seven to eight years, whereas setting up an FSTP takes one to two years.
Sewerage system is also resource intensive. Unlike septic tanks, sewer networks involve large amounts of water. It can be laid by only those cities that supply 135 litres per capita a day—a dream for even most class-1 cities. “Using water to flush faecal matter is just a waste of precious resource,” says Rohilla. Since sewerage systems require electricity for pumping sewage to running STPs, they are not reliable in small towns and cities that face frequent power outages. On the contrary, FSTPs require little electricity as most are based on natural systems (see ‘Triple bonanza’).
Triple bonanza
Faecal sludge management is not only cost-effective but also generates livelihood opportunities. Some technologies do not even require electricity Black soldier fly larvae: The technology uses larvae of a benign fly species, Hermetia illucens, to feed on the faecal matter. As the larvae grow and proliferate, they drastically reduce the volume of the waste within a couple of days and convert the dangerous pit material into a potentially useful soil conditioner or fertiliser. Once the larvae attain the prepupae stage, they can be harvested, processed to remove any possible pathogens and sold as animal feed. Because of high fat and protein content, there is an increasing demand for these animal feed. The technology is gaining ground in South Africa’s Ethekwini municipality. The country, which launched a sanitation programme similar to Swachh Bharat Mission in the 1990s, is innovating ways to dispose of the huge loads of faecal sludge and septage. Planted and unplanted drying bed: At a faecal sludge treatment plant, sludge is dried naturally in a sealed shallow pond with several layers of fliters and with evaporation facility. While this simple method can produce soil conditioners, one can plant wetland plants on the bed for efficient drying-up. It has an added advantage: the filters do not need to be desludged after each drying cycle. Fresh sludge can be directly applied onto the previous layer as the plants and their root systems maintain the porosity of the filter. Compared to unplanted drying beds, planted drying beds (also called humification beds), require desludging only once every five to 10 years and the removed sludge is a nutrient-rich soil conditioner. While Ghana has experimented with unplanted drying bed, planted drying bed is popular in Bangkok. |
Small wonder, several developing countries in Asia are taking steps to strengthen septage management. Consider the Philippines. About 40 per cent of the country’s population (including 85 per cent of the people in capital city Manila) use toilets that have septic tanks. Septage management is a main component in its Clean Water Act of 2004. The health department has also issued a manual guiding implementation of septage management programmes. Cities, such as Marikina and Dumaguete, have issued ordinances requiring regular desludging of septic tanks and have set up new FSTPs. In Malaysia, desludging at regular intervals is a must under federal law.
While India can follow in on the footsteps of these countries, it must ensure that people install on-site sanitation technologies suitable to the region’s geology. For example, people in Goa say none of the four sanitation technologies promoted under Swachh Bharat Mission is suitable for the region. The state receives heavy rainfall, has riverine areas, a high water table and a long sandy coastline. This makes it easy for faecal matter to seep through these twin pits and contaminate the groundwater. Septic tanks with soak pits also do not work as the partially treated effluent leaches through the soak pits. Biodigesters and biotoilets maybe suitable for the region, but they are expensive and people lack skills to construct, operate and maintain these toilets.
Connecting health issues with pollution in river
FSSM has its advantages. It is effective in unplanned areas—a common phenomenon in all towns in the Ganga basin. It can work seamlessly with sewers. For example, local urban bodies can include faecal sludge management alongside sewerage plan in Master Plans, City Development Plans and Swachh City or City Sanitation Plans.
All they need is guidance to upgrade on-site sanitation systems as per prescribed standards and bye-laws, to regularise private vacuum tankers and to operate and maintain FSTP. They should also be encouraged to tie up with private companies in managing faecal sludge. In Bangladesh, non-profit WaterAid Bangladesh and its partners the Bangladesh Association for Social Advancement are working with the Shakipur municipality to run a co-compost plant that uses both faecal sludge and organic waste to make compost.Researchers with the IWMI say cities that have sewerage systems in place should set up a plant that can treat both sewage and faecal sludge.
Cities that do not have a sewerage system and have a water supply level above 80 litres per capita a day (lpcd) should have a simplified sewer system to convey effluents from septic tanks, which can then be treated in a decentralised manner. The faecal sludge can be treated at FSTP. Co-composting can also be considered. Cities that have less than 80 lpcd water supply can treat faecal sludge by using microphytes in wetlands. They can also consider co-composting if the municipality collects solid waste.
“More than anything else, public awareness should be created,” says Nagendra Kumar, an official with Gangaghat Nagar Palika Parishad. “We cannot achieve anything without the cooperation of people,” he says. Agrees Rohilla. Ganga can be cleaned and city-wide sanitation can be achieved only if the government, civil society and people recognise faecal sludge management as a complementary solution along with the sewerage system. The need of the day is to connect water, sanitation and public health issues with abatement of pollution in river.
Recent Posts
Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.
Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.
The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.
Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.
In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.
Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.
“Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.
India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.
With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.
They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.
India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.
As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices
The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).
The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.
Here is an approximate break-up (in Rs):
a)Base Price | 39 |
b)Freight | 0.34 |
c) Price Charged to Dealers = (a+b) | 39.34 |
d) Excise Duty | 40.17 |
e) Dealer Commission | 4.68 |
f) VAT | 25.35 |
g) Retail Selling Price | 109.54 |
Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.
So the question is why government is not reducing the prices ?
India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.
However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.
That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.
Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.
Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.
But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.
Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.
This can pose a significant environmental and health threat.
In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.
A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.
As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.
For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.
It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.
Traditionally, engineering and public health have been understood as different fields.
Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.
Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.
India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.
The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.
In India, public health engineering is executed by the Public Works Department or by health officials.
This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering.
Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.
Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.
Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..
There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.
Diseases cannot be contained unless we provide good quality and adequate quantity of water. Most of the world’s diseases can be prevented by considering this.
Training our young minds towards creating sustainable water management systems would be the first step.
Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.
To leverage this opportunity even further, India needs to scale up in the same direction.
Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.
She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.
She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.
There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.
After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.
On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.
He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.
Never mind that the business is built on aggregation of small sellers who will not see half the profit .
Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?
Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.
If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.
Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.
As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.
But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?
It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.
However, this is a story of lopsided growth.
The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.
This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?
It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.
Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment.
What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.
India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.
The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?
At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.
Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.
From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.
The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.
Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.
Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.
One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.
If you think these are isolated examples, consider some larger data trends.
The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.
When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.
However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.
The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.
The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.
Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.
So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.
We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.
It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.