Disaster Management in India


Introduction:-

India’s geo-climatic conditions as well as its high degree of socio-economic vulnerability,makes it one of the most disaster prone country in the world. A disaster is an extreme disruption of the functioning of a society that causes widespread human, material, or environmental losses that exceed the ability of the affected society to cope with its own resources. Disasters are sometimes classified according to whether they are “natural” disasters, or “human-made” disasters.

Definition:-

The Disaster Management Act, 2005 defines disaster as “a catastrophe, mishap, calamity or grave occurrence in any area, arising from natural or man made causes, or by accident or  negligence which results in substantial loss of life or human suffering or damage to, and  destruction of, property, or damage to, or degradation of, environment, and is of such a nature or magnitude as to be beyond the coping capacity of the community of the affected area”.

 Types Of Disaster:-

disaster

Hazard Profile of India:-

india_hazard

Vulnerability Profile of India:-

  • India is one of the ten worst disaster prone countries of the world. The country is prone to disasters due to number of factors; both natural and human induced, including adverse geoclimatic conditions, topographic features, environmental degradation, population growth, urbanisation, industrialization, non scientific development practices etc. The factors either in original or by accelerating the intensity and frequency of disasters are responsible for heavy toll of human lives and disrupting the life supporting system in the country.
  • As far as the vulnerability to disaster is concerned,the five distinctive regions of the country i.e. Himalayan region, the alluvial plains, the hilly part of the peninsula, and the coastal zone have their own specific problems. While on one hand the Himalayan region is prone to disasters like earthquakes and landslides, the plain is affected by floods almost every year. The desert part of the country is affected by droughts and famine while the coastal zone susceptible to cyclones and storms.
  • Though peninsular India is considered to be the most stable portions, but occasional earthquakes in the region shows that geo- tectonic movements are still going on within its depth.
  • The western part of the country, including Rajasthan, Gujarat and some parts of Maharashtra are hit very frequently by drought situation. If Monsoon worsens the situation spreads in other parts of the country too. The disturbance in the pressure conditions over oceans, results into cyclones in coastal regions. The geo tectonic movements going on in the ocean floor make the coastal region prone to tsunami disaster too.

 

Disasters in India:-

1)Drought:-

The primary cause of any drought is deficiency of rainfall and in particular, the timing, distribution and intensity of this deficiency in relation to existing reserves.

A prolonged period of relatively dry weather leading to drought is a widely recognized climate anomaly.

Drought can be devastating as water supplies dry up, crops fail to grow, animals die, and malnutrition and ill health become widespread.

The environmental effects of drought, including stalinization of soil and groundwater decline, increased pollution of freshwater ecosystems and regional extinction of animal species.

drought

In India around 68 percent of the country is prone to drought in varying degrees.

Of the entire area 35 percent receives rain falls between 750 mm and 1125 mm which is considers drought prone while 33 percent which receives rainfalls between less than 750 mm is considered to be chronically drought prone.

2)Floods:-

India is one of the most flood prone countries in the world. The principal reasons for flood lie in the very nature of natural ecological systems in this country, namely, the monsoon, the highly silted river systems and the steep and highly erodible mountains, particularly those of the Himalayan ranges.

Twenty-three states and union territories in the country are subject to floods and 40 million hectares of land, roughly one-eighth of the country’s geographical area, is prone to floods.

3)Wind and Cyclones:-

The major natural disaster that affects the coastal regions of India is cyclone and as India has a coastline of about 7516 kms, it is exposed to nearly 10 percent of the world’s tropical cyclones.

About 71 percent of this area is in ten states (Gujarat, Maharashtra, Goa, Karnataka, Kerala, Tamil Nadu, Puducherry, Andhra Pradesh, Orissa and West Bengal).

The islands of Andaman, Nicobar and Lakshadweep are also prone to cyclones. On an average, about five or six tropical cyclones form in the Bay of Bengal and Arabian sea and hit the coast every year. Out of these, two or three are severe.

When a cyclone approaches to coast, a risk of serious loss or damage arises from severe winds, heavy rainfall, storm surges and river floods. The effect of a storm surge is most pronounced in wide and shallow bays exposed to cyclones such as in the northern part of Bay of Bengal.

Most cyclones occur in the Bay of Bengal followed by those in the Arabian Sea and the ratio is approximately 4:1.

Cyclone-Risk-Areas

Note :- Jammu & Kashmir is not affected by tropical cyclone, however , it has been tagged under high risk zone , because , Ladakh being a cold desert experiences intense cold wave and is a wind hazard prone zone.

Why group Wind and Cyclone zoning together ?

Ans- Although the reason behind the tagging in GOI report is unknown , however from a geographical perspective , one of the prominent feature that defines cyclone is it’s high wind speed.As Ladakh is also a wind hazard zone hence it is tagged under as _ WIND and CYCLONE hazard zone.

Reference to GOI report – http://www.bmtpc.org/topics.aspx?mid=56&Mid1=385

Here is the Map from GOI which is similar to the above map :-

dis goi

4)Heat Wave:-

Extreme positive departures from the normal maximum temperature result in a heat wave
during the summer season.

India_heat_wave_large

5)Cold Wave and Fog:-

Occurrences of extreme low temperature in association with incursion of dry cold winds from north into the sub continent are known as cold waves. The northern parts of India, specially the hilly regions and the adjoining plains, are influenced by transient disturbances in the mid latitude westerlies which often have weak frontal characteristics. These are known as western disturbances.

UP and Bihar rank the highest in terms of casualties from cold wave and this could be due to poor level of development and lack of shelters to the outdoor workers and farmers.

5)Thunderstorm, Hailstorm and Dust Storm:-

As winter season transforms into spring, the temperature rises initially in the southern parts of India, giving rise to thunderstorms and squally weather which are hazardous in nature.

While the southernmost part of the country is free from dust storms and hailstorms, such hazardous weather affects the central, northeastern, north and northwestern parts of the country.

The hailstorm frequencies are highest in the Assam valley, followed by hills of Uttarakhand, Jharkhand and Vidarbha Maharashtra.

Tornadoes are rare in India but some of them are quite devastating.

6)Earthquakes:-

Earthquakes over 5.5 magnitude on the Richter scale are progressively damaging to property and human life.

Massive earthquakes generally occur near the junction of two tectonic plates, e.g., along the Himalayan range, where the Indian plate goes below Eurasian plate. The Indian sub- continent situated on the boundaries of two continental plates is very prone to earthquakes.

Some of the most intense earthquakes of the world have occurred in India. Fortunately, none of these have occurred in any of the major cities.

According to latest seismic zoning map brought out by the Bureau of Indian Standard (BIS), over 65 percent of the country is prone to earthquake.

india-map-seismiczone

7)Landslides:-

Landslides mainly affect the Himalayan region and the western ghats of India. Landslides
are also common in the Nilgiri range. It is estimated that 30 percent of the world’s landslides occur in the Himalayas.

The Himalayan mountains, which constitute the youngest and most dominating mountain system in the world, are not a single long landmass but comprises a series of seven curvilinear parallel folds running along a grand arc for a total of 3400 kilometers. Due to its unique nature, the Himalayas have a history of landslides that has no comparison with any other mountain range in the world.

Landslides are also common in western ghat. In the Nilgiris, in 1978 alone, unprecedented rains in the region triggered about one hundred landslides which caused severe damage to communication lines, tea gardens and other cultivated crops.A valley in Nilgiris is called “Avalanches Valley”.

landslidezone8)Tsunami:-

Tsunamis and earthquakes happen after centuries of energy build up within the earth. A tsunami (in Japanese ‘tsu’ means harbor and ‘nami’ means wave) is a series of water waves caused by the displacement of a large volume of a body of water, usually an ocean.

tsunami

9)Stampede:-

The term stampede is applied to a sudden rush of a crowd of people, usually resulting in many injuries and death from suffocation and trampling. In stampede, the term mob or crowd is used to refer to a congregated, active, polarized aggregate of people, which is basically heterogeneous and complex.

Its most salient features include homogeneity of thought and action among its participants and their impulsive and irrational actions.

10)Nuclear Emergencies:-

Nuclear emergency /Disaster is caused due to an extraordinary release of radioactive
material or radiation either in the operation of nuclear reactors or other nuclear events like
explosion of a Radiological Dispersal Device (RDD) or Improvised Nuclear Device (IND) or
explosion of a nuclear weapon.

It is accompanied with sudden release of harmful radiations or radioactive materials or both together in to the environment.

nuke

Radiation releases due to any reason can be devastating – Chernobyl is a good example.
With modern reactor design, a catastrophic release of radiation is highly unlikely, but nevertheless,possible. This can happen due to factors beyond the control of the operating agencies e.g., human error, system failure, sabotage, earthquake, cyclone, flood and tsunami etc.

11)Epidemics:-

Infectious diseases are a major public health problem in India. While many infectious
diseases like tuberculosis and malaria are endemic, some of them occasionally attain epidemic proportion.

Epidemics are public health emergencies which disrupt routine health services and are major drain on resources. Epidemics include viral infections disease (mengitis, measles, dengue, polio,
typhoid fever etc.) and Bacterial infectious diseases (cholera, diarrheoa etc.) .

The main causes for epidemic are non availability of clean and hygienic drinking water contamination of drinking water sources, lack of awareness about sanitation, unhygienic food, overcrowding, biological conditions in addition to ecological factors.

Besides direct costs in epidemic control measures and treatment of patients, the indirect costs due to negative impact on domestic and international tourism and trade can be significant. For example, plague which was not reported from any part of India for almost a quarter of century, caused a major outbreak in Beed district in Maharashtra and Surat in Gujarat in 1994 and resulted in an estimated loss of almost US$ 1.7 billion.

Because of prevalence of these factors, developing countries including India are frequently affected by epidemics/ outbreaks which result in high morbidity and mortality and affect the public health and economy adversely.

During the last two decades of the 19th century (1982-2001), natural disasters in India had claimed a total death toll of around 1, 07,813 people (on an average more than 5,390 death toll every year)


Disaster Management in India


1)Evolution of Disaster Management in India

Disaster management in India has evolved from an activity-based reactive setup to a proactive institutionalized structure; from single faculty domain to a multi-stakeholder setup; and from a relief-based approach to a ‘multi-dimensional pro-active holistic approach for reducing risk’.

Over the past century, the disaster management in India has undergone substantive changes in its composition, nature and policy.

2)Emergence of Institutional Arrangement in India-

A permanent and institutionalised setup began in the decade of 1990s with set up of a disaster management cell under the Ministry of Agriculture, following the declaration of the decade of 1990 as the ‘International Decade for Natural Disaster Reduction’ (IDNDR) by the UN General Assembly.

Consequently, the disaster management division was shifted under the Ministry of Home Affairs in 2002

3)Disaster Management Framework:-

Shifting from relief and response mode, disaster management in India started to address the
issues of early warning systems, forecasting and monitoring setup for various weather related
hazards.

dis frame

National Level Institutions:-National Disaster Management Authority (NDMA):-

The National Disaster Management Authority (NDMA) was initially constituted on May 30, 2005 under the Chairmanship of Prime Minister vide an executive order.

SDMA (State Level, DDMA(District Level) also present.

National Crisis Management Committee (NCMC)

Legal Framework For Disaster Management :-

Disaster frme legalDMD- Disaster management Dept.

NIDM- National Institute of Disaster Management

NDRF – National Disaster Response Fund

Cabinet Committee on Disaster Management-

ncmc

Location of NDRF Battallions(National Disaster Response Force):-

bnsCBRN- Chemical, Biological, Radiological and Nuclear

Policy and response to Climate Change :-

1)National Action Plan on Climate Change (NAPCC)-

National Action Plan on Climate Change identified Eight missions.
• National Solar Mission
• National Mission on Sustainable Habitat
• National Mission for Enhanced Energy Efficiency
• National Mission for Sustaining The Himalayan Ecosystem
• National Water Mission
• National Mission for Green India
• National Mission for Sustainable Agriculture
• National Mission for Strategic Knowledge on Climate Change

2)National Policy on Disaster Management (NPDM),2009-

The policy envisages a safe and disaster resilient India by developing a holistic, proactive, multi-disaster oriented and technologydriven strategy through a culture of prevention, mitigation, preparedness and response. The policy covers all aspects of disaster management including institutional and legal arrangements,financial arrangements, disaster prevention, mitigation and preparedness, techno-legal regime, response, relief and rehabilitation, reconstruction and recovery, capacity development, knowledge management, research and development. It focuses on the areas where action is needed and the institutional mechanism through which such action can be channelised.

Prevention and Mitigation Projects:-

  • Mainstreaming of Disaster Risk Reduction in Developmental Strategy-Prevention and mitigation contribute to lasting improvement in safety and should beintegrated in the disaster management. The Government of India has adopted mitigation and prevention as essential components of their development strategy.
  • Mainstreaming of National Plan and its Sub-Plan
  • National Disaster Mitigation Fund
  • National Earthquake Risk Mitigation Project (NERMP)
    • National Building Code (NBC):- Earthquake resistant buildings
  • National Cyclone Risk Mitigation Project (NCRMP)
    • Integrated Coastal Zone Management Project (ICZMP)-The objective of the project is to assist GoI in building the national capacity for implementation of a comprehensive coastal management approach in the country and piloting the integrated coastal zone management approach in states of Gujarat, Orissa and West Bengal.
  • National Flood Risk Mitigation Project (NFRMP)
  • National Project for Integrated Drought Monitoring & Management
  • National Vector Borne Diseases Control Programme (NVBDCP)- key programme
    for prevention/control of outbreaks/epidemics of malaria, dengue, chikungunya etc., vaccines administered to reduce the morbidity and mortality due to diseases like measles, diphtheria, pertussis, poliomyelitis etc. Two key measures to prevent/control epidemics of water-borne diseases like cholera, viral hepatitis etc. include making available safe water and ensuring personal and domestic hygienic practices are adopted.

Early Warning Nodal Agencies:-

dis nodal

Post Disaster Management :-Post disaster management responses are created according to the disaster and location. The principles being – Faster Recovery, Resilient Reconstruction and proper Rehabilitation.

Capacity Development:-

Components of capacity development includes :-

  • Training
  • Education
  • Research
  • Awareness

National Institute for Capacity Development being – National Institute of Disaster Management (NIDM)

International Cooperation-

  1. Hyogo Framework of Action- The Hyogo Framework of Action (HFA) 2005-2015 was adopted to work globally towards sustainable reduction of disaster losses in lives and in the social, economic and environmental assets of communities and countries.
  2. United Nations International Strategy for Disaster Reduction (UNISDR)-In order to build the resilience of nations and communities to disasters through the implementation of the HFA , the UNISDR strives to catalyze, facilitate and mobilise the
    commitment and resources of national, regional and international stakeholders of the ISDR
    system.
  3. United Nation Disaster Management Team (UNDMT) –

    1. To ensure a prompt, effective and concerted country-level support to a governmental
      response in the event of a disaster, at the central, state and sub-state levels,
    2. To coordinate UN assistance to the government with respect to long term recovery, disaster mitigation and preparedness.
    3. To coordinate all disaster-related activities, technical advice and material assistance provided by UN agencies, as well as to take steps for optimal utilisation of resources by UN agencies.
  4. Global Facility for Disaster Risk Reduction (GFDRR):-
    1. GFDRR was set up in September 2006 jointly by the World Bank, donor partners (21countries and four international organisations), and key stakeholders of the International Strategy for Disaster Reduction (UN-ISDR). It is a long-term global partnership under the ISDR system established to develop and implement the HFA through a coordinated programme for reversing the trend in disaster losses by 2015.
    2. Its mission is to mainstream disaster reduction and climate change adaptation in a country’s development strategies to reduce vulnerability to natural hazards.
  5. ASEAN Region Forum (ARF)
  6. Asian Disaster Reduction Centre (ADRC)
  7. SAARC Disaster Management Centre (SDMC)
  8. Program for Enhancement of Emergency Response (PEER):-The Program for Enhancement of Emergency Response (PEER) is a regional training programme initiated in 1998 by the United States Agency for International Development’s, Office of U.S Foreign Disaster Assistance (USAID/OFDA) to strengthen disaster response capacities in Asia.

Way Forward:-

Principles and Steps:-

  • Policy guidelines at the macro level that would inform and guide the preparation and
    implementation of disaster management and development plans across sectors
  • Building in a culture of preparedness and mitigation
  • Operational guidelines of integrating disaster management practices into development, and
    specific developmental schemes for prevention and mitigation of disasters
  • Having robust early warning systems coupled with effective response plans at district, state
    and national levels
  • Building capacity of all stakeholders
  • Involving the community, NGOs, CSOs and the media at all stages of DM
  • Addressing gender issues in disaster management planning and developing a strategy for
    inclusive approach addressing the disadvantaged sections of the society towards disaster risk reduction.
  • Addressing climate risk management through adaptation and mitigation
  • Micro disaster Insurance
  • Flood Proofing
  • Building Codes and Enforcement
  • Housing Design and Finance
  • Road and Infrastructure

PDF DOWNLOAD

 

 

 

Share is Caring, Choose Your Platform!

Recent Posts

  • Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.

    Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.

    The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.

    Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.

    In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.

    Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.

    “Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.

    India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.

    With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.

    They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.

    India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.

    As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices

    The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).

    The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.

    Here is an approximate break-up (in Rs):

    a)Base Price

    39

    b)Freight

    0.34

    c) Price Charged to Dealers = (a+b)

    39.34

    d) Excise Duty

    40.17

    e) Dealer Commission

    4.68

    f) VAT

    25.35

    g) Retail Selling Price

    109.54

     

    Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.

    So the question is why government is not reducing the prices ?

    India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.

    However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.

    That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.

    Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.

    Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.

    But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.

  • Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.

    This can pose a significant environmental and health threat.

    In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.

    A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.

    As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.

    For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.

    It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.

    Traditionally, engineering and public health have been understood as different fields.

    Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.

    Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.

     

    India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.

    The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.

    In India, public health engineering is executed by the Public Works Department or by health officials.

    This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering. 

    Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.

    Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.

    Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..

     

    There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.

    Diseases cannot be contained unless we provide good quality and  adequate quantity of water. Most of the world’s diseases can be prevented by considering this.

    Training our young minds towards creating sustainable water management systems would be the first step.

    Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.

    To leverage this opportunity even further, India needs to scale up in the same direction.

    Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.

    She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.

    She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.

    There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.

    After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.

    On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.

    He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.

    Never mind that the business is built on aggregation of small sellers who will not see half the profit .

    Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?

    Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.

    If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.

    Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.

    As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.

    But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?

    It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.

    However, this is a story of lopsided growth.

    The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.

    This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?

    It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.

    Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment. 

    What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.

    India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.

    The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?

     

    At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.

    Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.

    From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.

    The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.

    Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.

    Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.

    One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.

    If you think these are isolated examples, consider some larger data trends.

    The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.

    When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.

    However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.

    The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.

    The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.

    Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.

    So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.

    We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.

    It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.

     

    Heat wave is a condition of air temperature which becomes fatal to human body when exposed. Often times, it is defined based on the temperature thresholds over a region in terms of actual temperature or its departure from normal.

    Heat wave is considered if maximum temperature of a station reaches at least 400C or more for Plains and at least 300C or more for Hilly regions.

    a) Based on Departure from Normal
    Heat Wave: Departure from normal is 4.50C to 6.40C
    Severe Heat Wave: Departure from normal is >6.40C

    b) Based on Actual Maximum Temperature

    Heat Wave: When actual maximum temperature ≥ 450C

    Severe Heat Wave: When actual maximum temperature ≥470C

    If above criteria met at least in 2 stations in a Meteorological sub-division for at least two consecutive days and it declared on the second day

     

    It is occurring mainly during March to June and in some rare cases even in July. The peak month of the heat wave over India is May.

    Heat wave generally occurs over plains of northwest India, Central, East & north Peninsular India during March to June.

    It covers Punjab, Haryana, Delhi, Uttar Pradesh, Bihar, Jharkhand, West Bengal, Odisha, Madhya Pradesh, Rajasthan, Gujarat, parts of Maharashtra & Karnataka, Andhra Pradesh and Telengana.

    Sometimes it occurs over Tamilnadu & Kerala also.

    Heat waves adversely affect human and animal lives.

    However, maximum temperatures more than 45°C observed mainly over Rajasthan and Vidarbha region in month of May.

     

     

    a. Transportation / Prevalence of hot dry air over a region (There should be a region of warm dry air and appropriate flow pattern for transporting hot air over the region).

    b. Absence of moisture in the upper atmosphere (As the presence of moisture restricts the temperature rise).

    c. The sky should be practically cloudless (To allow maximum insulation over the region).

    d. Large amplitude anti-cyclonic flow over the area.

    Heat waves generally develop over Northwest India and spread gradually eastwards & southwards but not westwards (since the prevailing winds during the season are westerly to northwesterly).

     

    The health impacts of Heat Waves typically involve dehydration, heat cramps, heat exhaustion and/or heat stroke. The signs and symptoms are as follows:
    1. Heat Cramps: Ederna (swelling) and Syncope (Fainting) generally accompanied by fever below 39*C i.e.102*F.
    2. Heat Exhaustion: Fatigue, weakness, dizziness, headache, nausea, vomiting, muscle cramps and sweating.
    3. Heat Stoke: Body temperatures of 40*C i.e. 104*F or more along with delirium, seizures or coma. This is a potential fatal condition.

     


     

    Norman Borlaug and MS Swaminathan in a wheat field in north India in March 1964

    Political independence does not have much meaning without economic independence.

    One of the important indicators of economic independence is self-sufficiency in food grain production.

    The overall food grain scenario in India has undergone a drastic transformation in the last 75 years.

    India was a food-deficit country on the eve of Independence. It had to import foodgrains to feed its people.

    The situation became more acute during the 1960s. The imported food had to be sent to households within the shortest possible time.

    The situation was referred to as ‘ship to mouth’.

    Presently, Food Corporation of India (FCI) godowns are overflowing with food grain stocks and the Union government is unable to ensure remunerative price to the farmers for their produce.

    This transformation, however, was not smooth.

    In the 1960s, it was disgraceful, but unavoidable for the Prime Minister of India to go to foreign countries with a begging bowl.

    To avoid such situations, the government motivated agricultural scientists to make India self-sufficient in food grain production.

    As a result, high-yield varieties (HYV) were developed. The combination of seeds, water and fertiliser gave a boost to food grain production in the country which is generally referred to as the Green Revolution.

    The impact of the Green Revolution, however, was confined to a few areas like Punjab, Haryana, western Uttar Pradesh in the north and (unified) Andhra Pradesh in the south.

    Most of the remaining areas were deficit in food grain production.

    Therefore the Union government had to procure food grain from surplus states to distribute it among deficit ones.

    At the time, farmers in the surplus states viewed procurement as a tax as they were prevented from selling their surplus foodgrains at high prices in the deficit states.

    As production of food grains increased, there was decentralisation of procurement. State governments were permitted to procure grain to meet their requirement.

    The distribution of food grains was left to the concerned state governments.

    Kerala, for instance, was totally a deficit state and had to adopt a distribution policy which was almost universal in nature.

    Some states adopted a vigorous public distribution system (PDS) policy.

    It is not out of place to narrate an interesting incident regarding food grain distribution in Andhra Pradesh. The Government of Andhra Pradesh in the early 1980s implemented a highly subsidised rice scheme under which poor households were given five kilograms of rice per person per month, subject to a ceiling of 25 kilograms at Rs 2 per kg. The state government required two million tonnes of rice to implement the scheme. But it received only on one million tonne from the Union government.

    The state government had to purchase another million tonne of rice from rice millers in the state at a negotiated price, which was higher than the procurement price offered by the Centre, but lower than the open market price.

    A large number of studies have revealed that many poor households have been excluded from the PDS network, while many undeserving households have managed to get benefits from it.

    Various policy measures have been implemented to streamline PDS. A revamped PDS was introduced in 1992 to make food grain easily accessible to people in tribal and hilly areas, by providing relatively higher subsidies.

    Targeted PDS was launched in 1997 to focus on households below the poverty line (BPL).

    Antyodaya Anna Yojana (AAY) was introduced to cover the poorest of the poor.

    Annapoorna Scheme was introduced in 2001 to distribute 10 kg of food grains free of cost to destitutes above the age of 65 years.

    In 2013, the National Food Security Act (NFSA) was passed by Parliament to expand and legalise the entitlement.

    Conventionally, a card holder has to go to a particular fair price shop (FPS) and that particular shop has to be open when s/he visits it. Stock must be available in the shop. The card holder should also have sufficient time to stand in the queue to purchase his quota. The card holder has to put with rough treatment at the hands of a FPS dealer.

    These problems do not exist once ration cards become smart cards. A card holder can go to any shop which is open and has available stocks. In short, the scheme has become card holder-friendly and curbed the monopoly power of the FPS dealer. Some states other than Chhattisgarh are also trying to introduce such a scheme on an experimental basis.

    More recently, the Government of India has introduced a scheme called ‘One Nation One Ration Card’ which enables migrant labourers to purchase  rations from the place where they reside. In August 2021, it was operational in 34 states and Union territories.

    The intentions of the scheme are good but there are some hurdles in its implementation which need to be addressed. These problems arise on account of variation in:

    • Items provided through FPS
    • The scale of rations
    • The price of items distributed through FPS across states. 

    It is not clear whether a migrant labourer gets items provided in his/her native state or those in the state s/he has migrated to and what prices will s/he be able to purchase them.

    The Centre must learn lessons from the experiences of different countries in order to make PDS sustainable in the long-run.

    For instance, Sri Lanka recently shifted to organic manure from chemical fertiliser without required planning. Consequently, it had to face an acute food shortage due to a shortage of organic manure.

    Some analysts have cautioned against excessive dependence on chemical fertiliser.

    Phosphorus is an important input in the production of chemical fertiliser and about 70-80 per cent of known resources of phosphorus are available only in Morocco.

    There is possibility that Morocco may manipulate the price of phosphorus.

    Providing excessive subsidies and unemployment relief may make people dependent, as in the case of Venezuela and Zimbabwe.

    It is better to teach a person how to catch a fish rather than give free fish to him / her.

    Hence, the government should give the right amount of subsidy to deserving people.

    The government has to increase livestock as in the case of Uruguay to make the food basket broad-based and nutritious. It has to see to it that the organic content in the soil is adequate, in order to make cultivation environmentally-friendly and sustainable in the long-run.

    In short, India has transformed from a food-deficit state to a food-surplus one 75 years after independence. However, the government must adopt environmental-friendly measures to sustain this achievement.

     

    Agroforestry is an intentional integration of trees on farmland.

    Globally, it is practised by 1.2 billion people on 10 per cent area of total agricultural lands (over 1 billion hectares).

    It is widely popular as ‘a low hanging fruit’ due to its multifarious tangible and intangible benefits. 

    The net carbon sequestered in agroforestry is 11.35 tonnes of carbon per ha

    A panacea for global issues such as climate change, land degradation, pollution and food security, agroforestry is highlighted as a key strategy to fulfil several targets:

        1. Kyoto Protocol of 2001
        2. Reducing Emissions from Deforestation and Forest Degradation (REDD) as well as REDD+ mechanisms proposed by the United Nations Framework Convention on Climate Change
        3. United Nations-mandated Sustainable Developmental Goals (SDG)
        4. Paris Agreement 
        5. Carbon Neutrality

     

    In 2017, a New York Times bestseller Project Drawdown published by 200 scientists around the world with a goal of reversing climate change, came up with the most plausible 100 solutions to slash–down greenhouse gas (GHG) emissions. 

    Out of these 100 solutions, 11 strategies were highlighted under the umbrella of agroforestry such as:-

    1. multistrata agroforestry,
    2. afforestation,
    3. tree intercropping,
    4. biomass production,
    5. regenerative agriculture,
    6. conservation agriculture,
    7. farmland restoration,
    8. silvopasture,
    9. tropical-staple tree,
    10. intercropping,
    11. bamboo and indigenous tree–based land management.

     

    Nowadays, tree-based farming in India is considered a silver bullet to cure all issues.

    It was promoted under the Green India mission of 2001, six out of eight missions under the National Action Plan on Climate Change (NAPCC) and National Agroforestry and Bamboo Mission (NABM), 2017 to bring a third of the geographical area under tree cover and offsetting GHG emissions. 

    These long-term attempts by the Government of India have helped enhance the agroforestry area to 13.75 million hectares. 

    The net carbon sequestered in agroforestry is 11.35 tonnes of carbon per ha and carbon sequestration potential is 0.35 tonnes of carbon per ha per year at the country level, according to the Central Agroforestry Research Institute, Jhansi.

    India will reduce an additional 2.5-3 billion tonnes of CO2 by increasing tree cover. This extra tree cover could be achieved through agroforestry systems because of their ability to withstand minimum inputs under extreme situations. 

    Here are some examples which portray the role of agroforestry in achieving at least nine out of the 17 SDGs through sustainable food production, ecosystem services and economic benefits: 

    SDG 1 — No Poverty: Almost 736 million people still live in extreme poverty. Diversification through integrating trees in agriculture unlocks the treasure to provide multifunctional benefits.

    Studies carried out in 2003 in the arid regions of India reported a 10-15 per cent increase in crop yield with Prosopis cineraria (khejari). Adoption of agroforestry increases income & production by reducing the cost of input & production.  

     

    SDG 2 — Zero hunger: Tree-based systems provide food and monetary returns. Traditional agroforestry systems like Prosopis cineraria and Madhuca longifolia (Mahua) provide edible returns during drought years known as “lifeline to the poor people”. 

    Studies showed that 26-50 per cent of households involved in tree products collection and selling act as a coping strategy to deal with hunger.

    SDG 3 — Good health and well-being: Human wellbeing and health are depicted through the extent of healthy ecosystems and services they provide.

    Agroforestry contributes increased access to diverse nutritious food, supply of medicine, clean air and reduces heat stress.

    Vegetative buffers can filter airstreams of particulates by removing dust, gas, microbial constituents and heavy metals. 

    SDG 5 — Gender equality: Throughout the world around 3 billion people depend on firewood for cooking.

    In this, women are the main collectors and it brings drudgery and health issues.

    A study from India stated that almost 374 hours per year are spent by women for collection of firewood. Growing trees nearby provides easy access to firewood and diverts time to productive purposes. 

    SDG 6 — Clean Water and Sanitation: Water is probably the most vital resource for our survival. The inherent capacity of trees offers hydrological regulation as evapotranspiration recharges atmospheric moisture for rainfall; enhanced soil infiltration recharges groundwater; obstructs sediment flow; rainwater filtration by accumulation of heavy metals.

    An extensive study in 35 nations published in 2017 concluded that 30 per cent of tree cover in watersheds resulted in improved sanitisation and reduced diarrheal disease.  

    SDG 7 — Affordable & Clean Energy: Wood fuels are the only source of energy to billions of poverty-stricken people.

    Though trees are substitutes of natural forests, modern technologies in the form of biofuels, ethanol, electricity generation and dendro-biomass sources are truly affordable and clean.

    Ideal agroforestry models possess fast-growing, high coppicing, higher calorific value and short rotation (2-3 years) characteristics and provide biomass of 200-400 tonnes per ha.

    SDG 12 — Responsible consumption and production: The production of agricultural and wood-based commodities on a sustainable basis without depleting natural resources and as low as external inputs (chemical fertilisers and pesticides) to reduce the ecological footprints.

    SDG 13 — Climate action: Globally, agricultural production accounts for up to 24 per cent of GHG emissions from around 22.2 million square km of agricultural area, according to the Food and Agriculture Organization. 

    A 2016 study depicted that conversion of agricultural land to agroforestry sequesters about 27.2± 13.5 tonnes CO2 equivalent per ha per year after establishment of systems. 

    Trees on farmland mitigate 109.34 million tonnes CO2 equivalent annually from 15.31 million ha, according to a 2017 report. This may offset a third of the total GHG emissions from the agriculture sector of India.

    SDG 15 — Life on Land: Agroforestry ‘mimics the forest ecosystem’ to contribute conservation of flora and faunas, creating corridors, buffers to existing reserves and multi-functional landscapes.

    Delivery of ecosystem services of trees regulates life on land. A one-hectare area of homegardens in Kerala was found to have 992 trees from 66 species belonging to 31 families, a recent study showed. 

    The report of the World Agroforestry Centre highlighted those 22 countries that have registered agroforestry as a key strategy in achieving their unconditional national contributions.

    Recently, the  Government of India has allocated significant financial support for promotion of agroforestry at grassroot level to make the Indian economy as carbon neutral. This makes agroforestry a low-hanging fruit to achieve the global goals.