Agro & social forestry have been traditionally practiced in India. Policy inclusion of agro & social forestry have not however brought in desired results. The article examines how agro & social forestry can be revisited and norms revised to make it more sustainable and meaningful.
Agroforestry –
Agroforestry is any sustainable land-use system that maintains or increases total yields by combining food crops (annuals) with tree crops (perennials) and/or livestock on the same unit of land, either alternately or at the same time, using management practices that suit the social and cultural characteristics of the local people and the economic and ecological conditions of the area.
Agroforestry is a collective name for land-use systems involving trees combined with crops and/or animals on the same unit of land. It combines:-
1) Production of multiple outputs with protection of the resource base;
2) Places emphasis on the use of multiple indigenous trees and shrubs;
3) Particularly suitable for low-input conditions and fragile environments;
4) It involves the interplay of socio-cultural values more than in most other land-use systems; and
5) It is structurally and functionally more complex than monoculture.
Its benefits include the diversification of agricultural income, cleaner environmental surroundings, provision of habitats, and maintenance of soil quality, food sources, carbon storage, increased agricultural incomes, and sustainability (National Agroforestry Centre, 2014).
Agroforestry, whether in small or large scale, is a characteristic feature of agriculture in India, although contemporary times have witnessed a lesser focus on traditional methods of agricultural practices. Estimations of area under agroforestry were initiated by the Ministry of Agriculture in 1977 is as per revenue records and satellite data. S.K. Dhyani (2014) in recent times has however, highlighted the need for proper area estimates of land in India under agroforestry.
BENEFITS OF AGROFORESTRY SYSTEM
A) Environmental benefits
ii More efficient recycling of nutrients by deep rooted trees on the site
iii) Better protection of ecological systems
iv) Reduction of surface run-off, nutrient leaching and soil erosion through impeding effect of tree roots and stems on these processes
v) Improvement of microclimate, such as lowering of soil surface temperature and reduction of evaporation of soil moisture through a combination of mulching and shading
vi) Increment in soil nutrients through addition and decomposition of litterfall.
vii) Improvement of soil structure through the constant addition of organic matter from decomposed litter.
B) Economic benefits
i) Increment in an outputs of food, fuel wood , fodder, fertiliser and timber;
ii) Reduction in incidence of total crop failure, which is common to single cropping or monoculture systems
iii) Increase in levels of farm income due to improved and sustained productivity
C) Social benefits
i) Improvement in rural living standards from sustained employment and higher income
ii) Improvement in nutrition and health due to increased quality and diversity of food outputs
iii) Stabilization and improvement of communities through elimination of the need to shift sites of farm activities.
Functional Basis of Agroforestry
All agroforestry systems have two functions.
A) Productive functions,
B) Protective functions
The Productive functions are:
I) Food
II) Fodder
III) Fuel wood
IV) Cloths
V) Shelter
VI) NTFPs
The Protective functions are:
i) Wind breaks
II) Shelterbelts
III) Soil conservation
IV) Soil improvement
TYPES OF AGROFORESTRY SYSTEMS
I) AGRISILVICULTURAL SYSTEMS
It involves the conscious and deliberate use of land for the concurrent production of agricultural crops including tree crops.
Based on the nature of the components this system can be grouped into various forms.
(i) Improved fallow species in shifting cultivation
(ii) The Taungya system
(iii) Multispecies tree gardens
(iv) Alley cropping (Hedgerow intercropping)
(v) Multipurpose trees and shrubs on farmlands
(vi) Crop combinations with plantation crops
(vii) Agroforestry fuelwood production
(viii) Shelterbelts
(ix) Windbreaks
(x) Soil Conservation hedges
Improved Fallow Species in Shifting Cultivation
Fallows are cropland left without crops for periods ranging from one season to several years. The objective of improved fallow species in shifting cultivation is to recover depleted soil nutrients. Once the soil has recovered, crops are reintroduced for one or more seasons.
This system is practised extensively in the north-eastern hill region comprising the states of Assam, Meghalaya, Manipur, Nagaland and Tripura and the two Union territories of Arunachal Pradesh and Mizoram and to some extent Andhra Pradesh, Bihar, Madhya Pradesh, Orissa and Karnataka states. It is called ‘jhum’ in the north-eastern hill region and ‘podu’ in AP and Orissa states and considered most destructive for forest areas.
Taungya System
A form of agroforestry system in which short term crops are grown in the early years of the plantation of a woody perennials species in order to utilize the land, control weeds, reduce establishment costs, generate early income and stimulate the development of the woody perennials species.
The taungya (taung = hill, ya = cultivation) is a Burmese word coined in Burma in 1850s. The taungya system was introduced into India by Brandis in 1890 and the first taungya plantations were raised in 1896 in North Bengal. It is practised in the states of Kerala, West Bengal and Uttar Pradesh and to a lesser extent in Tamil Nadu, Andhra Pradesh, Orissa, Karnataka and the north- eastern hill region. In southern India, the system is called ‘kumri‘. It is practised in areas with an assured annual rainfall of over 1200-1500 mm.
This is a modified form of shifting cultivation in which the labour is permitted to raise crops in an area but only side by side with the forest species planted by it. This labour is responsible for the upkeep of a plantation. The practice consists of land preparation, tree planting, growing agricultural crops for 1-3 years, until shade becomes too dense, and then moving on to repeat the cycle in a different area. In some cases crops may be grown one year before the trees are planted. A large variety of crops and trees, depending on the soil and climatic conditions.
Taungya systems are of three types:
(a) Departmental Taungya : Under this, agricultural crops and plantation are raised by the forest department by employing a number of labourers on daily wages. The main aim of raising crops along with the plantation is to keep down weed growth.
(b) Leased Taungya: The plantation land is given on lease to the person who offers the highest money for raising crops for a specified number of years and ensures care of tree plantation.
(c) Village Taungya: This is the most successful of the three taungya systems. In this, crops are raised by the people who have settled down in a village inside the forest for this purpose. Usually each family has about 0.8 to 1.7 ha of land to raise trees and cultivate crops for 3 to 4 years.
Advantages offered by the taungya system are:
(i) Artificial regeneration of the forest is obtained cheaply
(ii) Problems of unemployment are solved
(iii) Helps towards maximum utilisation of the site
(iv) Low cost method of forest plantation establishment
(v) In every case highly remunerative to the forest departments
(vi) Provision of food crops from forest land
(vii) Weed, climber growth etc. is eliminated.
Disadvantages of the taungya system
(i) Loss of soil fertility and exposure of soil
(ii) Danger of epidemics
(iii) Legal problems created
(iv) Susceptibility of land to accelerated erosion increases
(v) It is a form of exploitation of human labour
Multispecies Tree Gardens
In this system of agroforestry, various kinds of tree species are grown mixed. The major function of this system is production of food, fodder and wood products for home consumption and sale for cash.
Alley Cropping (Hedgerow Intercropping)
Alley cropping, also known as hedgerow intercropping, involves managing rows of closely planted (within row) woody plants with annual crops planted in alleys in between hedges.The woody plants are cut regularly and leaves and twigs are used as mulch on the cropped alleys in order to reduce evaporation from the soil surface, suppress weeds and/or add nutrients and organic matter to the top soil. Where nitrogen is required for crop production, nitrogen-fixing plants are the main components of the hedgerows.
The primary purpose of alley cropping is to maintain or increase crop yields by improvement of the soi, microclimate and weed control. Farmers may also obtain tree products from the hedgerows, including fuelwood, building poles, food, medicine and fodder andon sloping land, the hedgerows and prunings may help to control erosion. Alley cropping usually works best in places where people feel a need to intensify crop production but face soil fertility problems.
Ideally, trees and shrubs used for alley cropping should fix nitrogen and should also produce wood, food, fodder, medicine or other products used by farmers or other local community.
Shelter-belt:
These are belts/blocks consisting of several rows of trees established at right angles to
the prevailing wind. The purposes are:
a) to deflect air currents,
b) to reduce the velocity of prevailing winds,
c) to provide general protection to the leeward areas against the effects of wind erosion,
d) to protect the leeward areas from the desiccating effects of hot wind,
e) to provide food, fodder, timber etc.
Wind-break:
Wind-breaks are strips of trees and/or shrubs planted to protect fields, homes, canals or
other areas from wind and blowing soil or sand.
The important reasons for which wind-breaks are planted include:
to protect livestock from cold winds
to protect crops and pastures from hot, drying winds
to reduce/prevent soil erosion
to provide habitat for wildlife
to reduce evaporation from farmlands
to improve the microclimate for growing crops and to shelter people and livestock,
to retard grass fire
for fencing and boundry demarcation
Gaps are required for gates and tracks, but because of the funneling effect through gaps, wind velocity in these areas can be substantially increased. In multi row wind breaks this can be eliminated by angling the gap at about 45 degrees to the prevailing wind direction. Alternatively, a few plant, trees or shrubs can be used on either side of the gate or track to broaden the gap and reduce the funneling effect. Other solutions are to plant five or six trees at an angle to the main belt as a wing or to plant a second short row to cover the gaps.
Soil Conservation Hedges
Trees can be planted on physical soil conservation works (grass strips, bunds, risers and terraces) wherein they play two roles: ie., to stabilise the structure and to make productive use of the land they occupy.
Stabilisation is through the root system. In some
of sloping landscapes of the country, the risers or terraces are densely planted with trees, with multiple use being made of them for fruit, fodder and fuel wood . In this system the major groups of components are: multipurpose and trees and common agricultural species. The primary role of multipurpose trees and agricultural species is soil conservation and provision of various tree products.
Criteria of Good Agroforestry Design
A good agroforestry design should fulfill the following criteria:
i) Productivity: There are many different ways to improve productivity with agroforestry viz., increased output of tree products, improved yields of associated crops, reduction of cropping system inputs, increased labour efficiency, diversification of production, satisfaction of basic needs and other measures of economic efficiency or achievement of biological potential.
ii) Sustainability: By seeking improvements in the sustainability of production systems, agroforestry can achieve its conservation goals while appealing directly to the motivation of low income farmers , who may not always be interested in conservation for its own sake
iii) Adoptability: No matter how technically elegant or environmentally sound an agroforestry design may be, nothing practical is achieved unless it is adopted by its intended users. This means that the technology has to fit the social as well as environmental characteristics of the land-use system for which it is designed.
II) SILVOPASTORAL SYSTEMS
The production of woody plants combined with pasture is referred to Silvipasture system. The trees and shrubs may be used primarily to produce fodder for livestock or they may be grown for timber, fuelwood, fruit or to improve the soil.
This system is classified in to three categories
|
a) Protein bank
b) Livefence of fodder trees and hedges
c) Trees and shrubs on pasture |
a) Protein bank:
In this Silvipastoral system, various multipurpose trees (protein rich trees) are planted in or around farmlands and range lands for cut and carry fodder production to meet the feed requirement of livestock during the fodder deficit period in winter.
b) Livefence of fodder trees and hedges:
In this system, various fodder trees and hedges are planted as live fence to protect the property from stray animals or other biotic influences.
c) Trees and shrubs on pasture:
In this system, various tree and shrub species are scattered irregularly or arranged according to some systemic pattern to supplement forage production.
III) AGROSILVOPASTORAL SYSTEMS
The production of woody perennials combined with annuals and pastures is referred Agrisilvopastural system.
This system is grouped into two categories.
a) Home gardens
b) Woody hedgerows for browse, mulch, green manure and soil conservation
a) Home gardens
This system is found extensively in high rainfall areas in tropical South and South east Asia. This practice finds expression in the states of Kerala and Tamil Nadu with humid tropical climates where coconut is the main crop. Many species of trees, bushes , vegetables and other herbaceous plants are grown in dense and in random or spatial and temporal arrangements. Most home gardens also support a variety of animals. Fodder grass and legumes are also grown to meet the fodder requirement of cattle. In India, every homestead has around 0.20 to 0.50 ha land for personal production.
Home gardens represent land use systems involving deliberate management of multipurpose trees and shrubs in intimate association with annual and perennial agricultural crops and livestock within the compounds of individual houses. The whole tree- crop- animal units are being intensively managed by family labour. Home gardens can also be called as Multitier system or Multitier cropping.
Home gardens are highly productive, sustainable and very practicable. Food production is primary function of most home gardens.
b) Woody Hedgerows:
In this system various woody hedges, especially fast growing and coppicing fodder shrubs and trees are planted for the purpose of browse, mulch, green manure, soil conservation etc.
IV) OTHER SYSTEMS
a) Apiculture with trees: In this system various honey (nector) producing trees frequently visited by honeybees are planted on the boundary of the agricultural fields
b) Aquaforestry: In this system various trees and shrubs preferred by fish are planted on the boundary and around fish ponds. Tree leaves are used as feed for fish. The main role of this system is fish production and bund stabilization around fish ponds
c) Mixed wood lots: In this system, special location specific MultiPurpose Trees ( MPTs) are grown mixed or separately planted for various purposes such as wood, fodder, soil conservation , soil reclamation etc.
Constraints in agroforestry
The following are the major constraints in agroforestry
1. Depression in crop yields due to interference effects caused by the tree
2. Delayed liquidation of planting investments due to long gestation period
3. Increased damage to crops due to birds which the trees attract
4. Increased damage to crops due to pests for which the tree serve as alternate hosts
5. Allelopathy – UPSC Question
Interference effects
In an agroforestry system, trees being the dominant partners,will compete with the herbaceous substratum for resource pools of light, water and nutrients. When the immediate supply of a single necessary factor falls below the combined demands of the plant, then the competition begins.The competition is also referred as Allelospoly.
The nature and quantum of these adverse effects depend upon I) the age and size of the trees, ii) nature of the tree species iii) nature of the agricultural crops ,iv) availability of water, nutrients , light, etc. The impact of the adverse effects is greatest in the close vicinity of the trees and diminishes as the distances increases Such effects were observed in different crops with a combination of different tree species.
Allelopathy
Muller(1969) emphasized that allelopathy, the direct or indirect effect of one plant upon another through the production of chemical inhibitors that are released in to the environment , should also be recognized as another factor in analyzing mechanisms of plant interactions. The species interaction due to chemical influences is also designated as Allelochemistry, Phytochemical ecology or Ecological biochemistry and Allelobiology.
Most of the chemical substances involved in allelopathic reactions are secondary compounds. Though the toxic metabolites are distributed in other plant parts also, leaves are the potent source of allelochemicals. Summer materials are more toxic than those of rainy and winter season. Toxins released from plant litter are the primary causes of allelopathy.
ROLE OF TREES IN SOIL FERTILITY
Tree root pattern-
It is generally assumed that trees have deep and spreading roots and hence are capable of exploiting more soil volume and taking up nutrients and water from deeper layer not usually contacted by herbaceous crops. This process of taking up nutrients from deeper soil profiles and eventually depositing at least some portion of them on the surface layers through litter-fall and other mechanisms is referred to as ‘nutrient pumping’ by trees. It is well known that the development of plants depends on site characters and environmental factors. Many woody species have the largest number of roots and the majority of the fine roots are located in the uppermost fertile portion of the soil profile. Some tree species are shallow rooted. Prosopis chilensis has a shallow and spreading root system whereas P. juliflora, is known to have a very deep root system.
Role of trees in soil fertility
1)Organic matter and nutrient addition to the soil -litter fall
2)Dinitrogen fixation by trees – Mimosoideae and Fabaceae are well known to fix nitrogen.
3)Nutrient cycling
Policy on Agroforestry
B. Chavan, n his paper ‘National Agroforestry Policy in India: a low hanging fruit’ (2015) talks about agroforestry being a traditional form of land use in India. He argues that although it is beneficial to both the environment and farmer’s income, and enjoys support in certain regions of India from industry, wide adoption of agroforestry remains a bulwark due to a lack of policy initiatives and the strictness of trade regulations.
The authors cite that a lack of a clear-cut mechanism to moderate the agroforestry sector makes it difficult for it to be a success. Their paper mostly talks about the ‘National Agroforestry Policy, 2014’ that addressed certain aspects of agroforestry without providing an archetype for clear-cut management of the sector.
The National Agroforestry Policy (NAP) was born out of consultations in the World Congress on Agroforestry held in New Delhi in 2014. In the presence of delegates from 80 countries worldwide, the President of India Pranab Mukherjee launched the Policy – the first of its kind globally.
However, there are many hurdles in implementing the NAP in a proper manner. First, there is incoherency in the regulation regime as regards the species utilized by agroforestry. The multifarious restrictions over the harvesting, transit and marketing of various species in the absence of uniform systems lead to farmers adopting crops that are sometimes outside their natural habitats.
Second, given that forests are located usually at the fringes of populated areas, and some farmers might be cultivating in such regions, only 10 per cent of quality planting material reaches the remote regions.
Third, given that farmers involved in agroforestry are sometimes poor and remotely located, there is a lack of insurance and credit from organized finance (S.B. Chavan, et. al. 2015). The traditional methods of agroforestry tend to preserve the biomes in localities and thus aid ecosystem services. A lack of policy sensitive to the widespread traditional technique of planting trees by farmlands or as farming could disrupt entire ecosystems.
The Bansal Committee, instituted in 2011 by the Ministry of Environment, Government of India to carry out studies on regulations for tree-species on non-forest private lands, recommended that the permissions for the felling of tree-species required by farmers be relaxed. The plan is not included in the policy yet, but is intended to encourage the large-scale cultivation of crop tree-species.
However, the NAP in 2014 identified 20 tree-species most utilized by farmers to be free from such restrictions. The supply of quality planting material to remote regions is also a bottleneck to large-scale cultivation, which can involve the application of biotechnology in forest land.
Throughout the conditions for the implementation of the NAP, forest certification acts as a hurdle rather than facilitator, preventing the large-scale planting and cultivation of crop tree-species. Forest certification is often tapped through international accreditation agencies like the Forest Stewardship Council and the International Timber Trade Organization. There is a possibility though to include agroforestry under organic farming as forests tend to be self-sustained systems of production that require less external inputs, and bring their products under organic farming certification.
Social Forestry
Social forestry slightly differs from agroforestry in that while social forestry involves human intervention in managed forests, here though, management is not private, and engages involvement from the people in managing forests, i.e. social management (AgriInfo.in, 2015). There can be a wide range of social and economic goals to social forestry, and the objectives are based on the useful benefits of growing trees, placing a focus on social efforts towards afforestation. Social forestry involves more than just social co-operation in planting trees. Social forestry engages social collectivities in the activity of large or small scale planting of trees and vegetation outside traditional forest areas with the objective of achieving balanced and symbiotic land use that can have environmental, social or economic goals. The term can be used in conjunction with any programme involving social activation in afforestation.
Policy on Social Forestry
Social forestry is especially important for marginalized and poor rural people and communities as a source of social and economic security. The form of land use is important for social forestry as it utilizes community lands, land under public ownership, and replenishes degraded lands and puts them to ecologically beneficial social and economic uses. This form of cultivation is suitable even for remote areas as governmental intervention is not an important determinant for its ends, and finance is usually arranged through the Panchayat.
In such a scenario, the National Commission on Agriculture (NAC) suggested certain guidelines in 1976 to encourage the widespread adoption of social forestry. These guidelines were intended with a view to protect rural communities against the spread of production forestry. However, most forest renovation efforts of degraded forests are taken up by forest departments, while on the ground the majority of intended participants were poor, marginalized rural folk usually living in remote areas who fall outside the policy radar. The onus instead falls on certain NGOs and local collectivities that are too sparse to make a total impact across the country.
The guidelines include pastoral requirements; household, cottage and small-scale requirements for raw materials; employment for rural poor through social forestry activities; rejuvenation of degraded forest lands; supplementing the NAP; providing recreation or tourism; and improvement of the aesthetic value of landscapes.
Conclusion
The problem in both agro & social forestry is a lack of policy outreach, and is borne from the transition from traditional ways of living in rural communities to modern forms of agriculture and livelihood. There is thus a lack of participation from local communities with respect to policy, that has not yet assimilated the traditional methods and ethos of agro & social forestry.
While social forestry is invaluable to conservation efforts towards forests and ecosystems, agro forestry opens up certain tree-species to production processes. Traditional methods of agriculture involve the maintenance of a balance and co-existence with the native ecology, which is disturbed by artificial and extraneous constraints placed on farmers by income expediency and the market.
Agro forestry can work in tandem with forest certification if it can maintain this healthy co-existence, especially when it can be a significant practice in remote locations. Activating this traditional ethos can be a step forward towards social forestry as well. Agro & social forestry thus needs active research and best practice norms to mark its efficacy.
Recent Posts
- Items provided through FPS
- The scale of rations
- The price of items distributed through FPS across states.
- Kyoto Protocol of 2001
- Reducing Emissions from Deforestation and Forest Degradation (REDD) as well as REDD+ mechanisms proposed by the United Nations Framework Convention on Climate Change
- United Nations-mandated Sustainable Developmental Goals (SDG)
- Paris Agreement
- Carbon Neutrality
- multistrata agroforestry,
- afforestation,
- tree intercropping,
- biomass production,
- regenerative agriculture,
- conservation agriculture,
- farmland restoration,
- silvopasture,
- tropical-staple tree,
- intercropping,
- bamboo and indigenous tree–based land management.
Petrol in India is cheaper than in countries like Hong Kong, Germany and the UK but costlier than in China, Brazil, Japan, the US, Russia, Pakistan and Sri Lanka, a Bank of Baroda Economics Research report showed.
Rising fuel prices in India have led to considerable debate on which government, state or central, should be lowering their taxes to keep prices under control.
The rise in fuel prices is mainly due to the global price of crude oil (raw material for making petrol and diesel) going up. Further, a stronger dollar has added to the cost of crude oil.
Amongst comparable countries (per capita wise), prices in India are higher than those in Vietnam, Kenya, Ukraine, Bangladesh, Nepal, Pakistan, Sri Lanka, and Venezuela. Countries that are major oil producers have much lower prices.
In the report, the Philippines has a comparable petrol price but has a per capita income higher than India by over 50 per cent.
Countries which have a lower per capita income like Kenya, Bangladesh, Nepal, Pakistan, and Venezuela have much lower prices of petrol and hence are impacted less than India.
“Therefore there is still a strong case for the government to consider lowering the taxes on fuel to protect the interest of the people,” the report argued.
India is the world’s third-biggest oil consuming and importing nation. It imports 85 per cent of its oil needs and so prices retail fuel at import parity rates.
With the global surge in energy prices, the cost of producing petrol, diesel and other petroleum products also went up for oil companies in India.
They raised petrol and diesel prices by Rs 10 a litre in just over a fortnight beginning March 22 but hit a pause button soon after as the move faced criticism and the opposition parties asked the government to cut taxes instead.
India imports most of its oil from a group of countries called the ‘OPEC +’ (i.e, Iran, Iraq, Saudi Arabia, Venezuela, Kuwait, United Arab Emirates, Russia, etc), which produces 40% of the world’s crude oil.
As they have the power to dictate fuel supply and prices, their decision of limiting the global supply reduces supply in India, thus raising prices
The government charges about 167% tax (excise) on petrol and 129% on diesel as compared to US (20%), UK (62%), Italy and Germany (65%).
The abominable excise duty is 2/3rd of the cost, and the base price, dealer commission and freight form the rest.
Here is an approximate break-up (in Rs):
a)Base Price | 39 |
b)Freight | 0.34 |
c) Price Charged to Dealers = (a+b) | 39.34 |
d) Excise Duty | 40.17 |
e) Dealer Commission | 4.68 |
f) VAT | 25.35 |
g) Retail Selling Price | 109.54 |
Looked closely, much of the cost of petrol and diesel is due to higher tax rate by govt, specifically excise duty.
So the question is why government is not reducing the prices ?
India, being a developing country, it does require gigantic amount of funding for its infrastructure projects as well as welfare schemes.
However, we as a society is yet to be tax-compliant. Many people evade the direct tax and that’s the reason why govt’s hands are tied. Govt. needs the money to fund various programs and at the same time it is not generating enough revenue from direct taxes.
That’s the reason why, govt is bumping up its revenue through higher indirect taxes such as GST or excise duty as in the case of petrol and diesel.
Direct taxes are progressive as it taxes according to an individuals’ income however indirect tax such as excise duty or GST are regressive in the sense that the poorest of the poor and richest of the rich have to pay the same amount.
Does not matter, if you are an auto-driver or owner of a Mercedes, end of the day both pay the same price for petrol/diesel-that’s why it is regressive in nature.
But unlike direct tax where tax evasion is rampant, indirect tax can not be evaded due to their very nature and as long as huge no of Indians keep evading direct taxes, indirect tax such as excise duty will be difficult for the govt to reduce, because it may reduce the revenue and hamper may programs of the govt.
Globally, around 80% of wastewater flows back into the ecosystem without being treated or reused, according to the United Nations.
This can pose a significant environmental and health threat.
In the absence of cost-effective, sustainable, disruptive water management solutions, about 70% of sewage is discharged untreated into India’s water bodies.
A staggering 21% of diseases are caused by contaminated water in India, according to the World Bank, and one in five children die before their fifth birthday because of poor sanitation and hygiene conditions, according to Startup India.
As we confront these public health challenges emerging out of environmental concerns, expanding the scope of public health/environmental engineering science becomes pivotal.
For India to achieve its sustainable development goals of clean water and sanitation and to address the growing demands for water consumption and preservation of both surface water bodies and groundwater resources, it is essential to find and implement innovative ways of treating wastewater.
It is in this context why the specialised cadre of public health engineers, also known as sanitation engineers or environmental engineers, is best suited to provide the growing urban and rural water supply and to manage solid waste and wastewater.
Traditionally, engineering and public health have been understood as different fields.
Currently in India, civil engineering incorporates a course or two on environmental engineering for students to learn about wastewater management as a part of their pre-service and in-service training.
Most often, civil engineers do not have adequate skills to address public health problems. And public health professionals do not have adequate engineering skills.
India aims to supply 55 litres of water per person per day by 2024 under its Jal Jeevan Mission to install functional household tap connections.
The goal of reaching every rural household with functional tap water can be achieved in a sustainable and resilient manner only if the cadre of public health engineers is expanded and strengthened.
In India, public health engineering is executed by the Public Works Department or by health officials.
This differs from international trends. To manage a wastewater treatment plant in Europe, for example, a candidate must specialise in wastewater engineering.
Furthermore, public health engineering should be developed as an interdisciplinary field. Engineers can significantly contribute to public health in defining what is possible, identifying limitations, and shaping workable solutions with a problem-solving approach.
Similarly, public health professionals can contribute to engineering through well-researched understanding of health issues, measured risks and how course correction can be initiated.
Once both meet, a public health engineer can identify a health risk, work on developing concrete solutions such as new health and safety practices or specialised equipment, in order to correct the safety concern..
There is no doubt that the majority of diseases are water-related, transmitted through consumption of contaminated water, vectors breeding in stagnated water, or lack of adequate quantity of good quality water for proper personal hygiene.
Diseases cannot be contained unless we provide good quality and adequate quantity of water. Most of the world’s diseases can be prevented by considering this.
Training our young minds towards creating sustainable water management systems would be the first step.
Currently, institutions like the Indian Institute of Technology, Madras (IIT-M) are considering initiating public health engineering as a separate discipline.
To leverage this opportunity even further, India needs to scale up in the same direction.
Consider this hypothetical situation: Rajalakshmi, from a remote Karnataka village spots a business opportunity.
She knows that flowers, discarded in the thousands by temples can be handcrafted into incense sticks.
She wants to find a market for the product and hopefully, employ some people to help her. Soon enough though, she discovers that starting a business is a herculean task for a person like her.
There is a laborious process of rules and regulations to go through, bribes to pay on the way and no actual means to transport her product to its market.
After making her first batch of agarbathis and taking it to Bengaluru by bus, she decides the venture is not easy and gives up.
On the flipside of this is a young entrepreneur in Bengaluru. Let’s call him Deepak. He wants to start an internet-based business selling sustainably made agarbathis.
He has no trouble getting investors and to mobilise supply chains. His paperwork is over in a matter of days and his business is set up quickly and ready to grow.
Never mind that the business is built on aggregation of small sellers who will not see half the profit .
Is this scenario really all that hypothetical or emblematic of how we think about entrepreneurship in India?
Between our national obsession with unicorns on one side and glorifying the person running a pakora stall for survival as an example of viable entrepreneurship on the other, is the middle ground in entrepreneurship—a space that should have seen millions of thriving small and medium businesses, but remains so sparsely occupied that you could almost miss it.
If we are to achieve meaningful economic growth in our country, we need to incorporate, in our national conversation on entrepreneurship, ways of addressing the missing middle.
Spread out across India’s small towns and cities, this is a class of entrepreneurs that have been hit by a triple wave over the last five years, buffeted first by the inadvertent fallout of demonetization, being unprepared for GST, and then by the endless pain of the covid-19 pandemic.
As we finally appear to be reaching some level of normality, now is the opportune time to identify the kind of industries that make up this layer, the opportunities they should be afforded, and the best ways to scale up their functioning in the shortest time frame.
But, why pay so much attention to these industries when we should be celebrating, as we do, our booming startup space?
It is indeed true that India has the third largest number of unicorns in the world now, adding 42 in 2021 alone. Braving all the disruptions of the pandemic, it was a year in which Indian startups raised $24.1 billion in equity investments, according to a NASSCOM-Zinnov report last year.
However, this is a story of lopsided growth.
The cities of Bengaluru, Delhi/NCR, and Mumbai together claim three-fourths of these startup deals while emerging hubs like Ahmedabad, Coimbatore, and Jaipur account for the rest.
This leap in the startup space has created 6.6 lakh direct jobs and a few million indirect jobs. Is that good enough for a country that sends 12 million fresh graduates to its workforce every year?
It doesn’t even make a dent on arguably our biggest unemployment in recent history—in April 2020 when the country shutdown to battle covid-19.
Technology-intensive start-ups are constrained in their ability to create jobs—and hybrid work models and artificial intelligence (AI) have further accelerated unemployment.
What we need to focus on, therefore, is the labour-intensive micro, small and medium enterprise (MSME). Here, we begin to get to a definitional notion of what we called the mundane middle and the problems it currently faces.
India has an estimated 63 million enterprises. But, out of 100 companies, 95 are micro enterprises—employing less than five people, four are small to medium and barely one is large.
The questions to ask are: why are Indian MSMEs failing to grow from micro to small and medium and then be spurred on to make the leap into large companies?
At the Global Alliance for Mass Entrepreneurship (GAME), we have advocated for a National Mission for Mass Entrepreneurship, the need for which is more pronounced now than ever before.
Whenever India has worked to achieve a significant economic milestone in a limited span of time, it has worked best in mission mode. Think of the Green Revolution or Operation Flood.
From across various states, there are enough examples of approaches that work to catalyse mass entrepreneurship.
The introduction of entrepreneurship mindset curriculum (EMC) in schools through alliance mode of working by a number of agencies has shown significant improvement in academic and life outcomes.
Through creative teaching methods, students are encouraged to inculcate 21st century skills like creativity, problem solving, critical thinking and leadership which are not only foundational for entrepreneurship but essential to thrive in our complex world.
Udhyam Learning Foundation has been involved with the Government of Delhi since 2018 to help young people across over 1,000 schools to develop an entrepreneurial mindset.
One pilot programme introduced the concept of ‘seed money’ and saw 41 students turn their ideas into profit-making ventures. Other programmes teach qualities like grit and resourcefulness.
If you think these are isolated examples, consider some larger data trends.
The Observer Research Foundation and The World Economic Forum released the Young India and Work: A Survey of Youth Aspirations in 2018.
When asked which type of work arrangement they prefer, 49% of the youth surveyed said they prefer a job in the public sector.
However, 38% selected self-employment as an entrepreneur as their ideal type of job. The spirit of entrepreneurship is latent and waiting to be unleashed.
The same can be said for building networks of successful women entrepreneurs—so crucial when the participation of women in the Indian economy has declined to an abysmal 20%.
The majority of India’s 63 million firms are informal —fewer than 20% are registered for GST.
Research shows that companies that start out as formal enterprises become two-three times more productive than a similar informal business.
So why do firms prefer to be informal? In most cases, it’s because of the sheer cost and difficulty of complying with the different regulations.
We have academia and non-profits working as ecosystem enablers providing insights and evidence-based models for growth. We have large private corporations and philanthropic and funding agencies ready to invest.
It should be in the scope of a National Mass Entrepreneurship Mission to bring all of them together to work in mission mode so that the gap between thought leadership and action can finally be bridged.
Heat wave is a condition of air temperature which becomes fatal to human body when exposed. Often times, it is defined based on the temperature thresholds over a region in terms of actual temperature or its departure from normal.
Heat wave is considered if maximum temperature of a station reaches at least 400C or more for Plains and at least 300C or more for Hilly regions.
a) Based on Departure from Normal
Heat Wave: Departure from normal is 4.50C to 6.40C
Severe Heat Wave: Departure from normal is >6.40C
b) Based on Actual Maximum Temperature
Heat Wave: When actual maximum temperature ≥ 450C
Severe Heat Wave: When actual maximum temperature ≥470C
If above criteria met at least in 2 stations in a Meteorological sub-division for at least two consecutive days and it declared on the second day
It is occurring mainly during March to June and in some rare cases even in July. The peak month of the heat wave over India is May.
Heat wave generally occurs over plains of northwest India, Central, East & north Peninsular India during March to June.
It covers Punjab, Haryana, Delhi, Uttar Pradesh, Bihar, Jharkhand, West Bengal, Odisha, Madhya Pradesh, Rajasthan, Gujarat, parts of Maharashtra & Karnataka, Andhra Pradesh and Telengana.
Sometimes it occurs over Tamilnadu & Kerala also.
Heat waves adversely affect human and animal lives.
However, maximum temperatures more than 45°C observed mainly over Rajasthan and Vidarbha region in month of May.

a. Transportation / Prevalence of hot dry air over a region (There should be a region of warm dry air and appropriate flow pattern for transporting hot air over the region).
b. Absence of moisture in the upper atmosphere (As the presence of moisture restricts the temperature rise).
c. The sky should be practically cloudless (To allow maximum insulation over the region).
d. Large amplitude anti-cyclonic flow over the area.
Heat waves generally develop over Northwest India and spread gradually eastwards & southwards but not westwards (since the prevailing winds during the season are westerly to northwesterly).
The health impacts of Heat Waves typically involve dehydration, heat cramps, heat exhaustion and/or heat stroke. The signs and symptoms are as follows:
1. Heat Cramps: Ederna (swelling) and Syncope (Fainting) generally accompanied by fever below 39*C i.e.102*F.
2. Heat Exhaustion: Fatigue, weakness, dizziness, headache, nausea, vomiting, muscle cramps and sweating.
3. Heat Stoke: Body temperatures of 40*C i.e. 104*F or more along with delirium, seizures or coma. This is a potential fatal condition.

Norman Borlaug and MS Swaminathan in a wheat field in north India in March 1964
Political independence does not have much meaning without economic independence.
One of the important indicators of economic independence is self-sufficiency in food grain production.
The overall food grain scenario in India has undergone a drastic transformation in the last 75 years.
India was a food-deficit country on the eve of Independence. It had to import foodgrains to feed its people.
The situation became more acute during the 1960s. The imported food had to be sent to households within the shortest possible time.
The situation was referred to as ‘ship to mouth’.
Presently, Food Corporation of India (FCI) godowns are overflowing with food grain stocks and the Union government is unable to ensure remunerative price to the farmers for their produce.
This transformation, however, was not smooth.
In the 1960s, it was disgraceful, but unavoidable for the Prime Minister of India to go to foreign countries with a begging bowl.
To avoid such situations, the government motivated agricultural scientists to make India self-sufficient in food grain production.
As a result, high-yield varieties (HYV) were developed. The combination of seeds, water and fertiliser gave a boost to food grain production in the country which is generally referred to as the Green Revolution.
The impact of the Green Revolution, however, was confined to a few areas like Punjab, Haryana, western Uttar Pradesh in the north and (unified) Andhra Pradesh in the south.
Most of the remaining areas were deficit in food grain production.
Therefore the Union government had to procure food grain from surplus states to distribute it among deficit ones.
At the time, farmers in the surplus states viewed procurement as a tax as they were prevented from selling their surplus foodgrains at high prices in the deficit states.
As production of food grains increased, there was decentralisation of procurement. State governments were permitted to procure grain to meet their requirement.
The distribution of food grains was left to the concerned state governments.
Kerala, for instance, was totally a deficit state and had to adopt a distribution policy which was almost universal in nature.
Some states adopted a vigorous public distribution system (PDS) policy.
It is not out of place to narrate an interesting incident regarding food grain distribution in Andhra Pradesh. The Government of Andhra Pradesh in the early 1980s implemented a highly subsidised rice scheme under which poor households were given five kilograms of rice per person per month, subject to a ceiling of 25 kilograms at Rs 2 per kg. The state government required two million tonnes of rice to implement the scheme. But it received only on one million tonne from the Union government.
The state government had to purchase another million tonne of rice from rice millers in the state at a negotiated price, which was higher than the procurement price offered by the Centre, but lower than the open market price.
A large number of studies have revealed that many poor households have been excluded from the PDS network, while many undeserving households have managed to get benefits from it.
Various policy measures have been implemented to streamline PDS. A revamped PDS was introduced in 1992 to make food grain easily accessible to people in tribal and hilly areas, by providing relatively higher subsidies.
Targeted PDS was launched in 1997 to focus on households below the poverty line (BPL).
Antyodaya Anna Yojana (AAY) was introduced to cover the poorest of the poor.
Annapoorna Scheme was introduced in 2001 to distribute 10 kg of food grains free of cost to destitutes above the age of 65 years.
In 2013, the National Food Security Act (NFSA) was passed by Parliament to expand and legalise the entitlement.
Conventionally, a card holder has to go to a particular fair price shop (FPS) and that particular shop has to be open when s/he visits it. Stock must be available in the shop. The card holder should also have sufficient time to stand in the queue to purchase his quota. The card holder has to put with rough treatment at the hands of a FPS dealer.
These problems do not exist once ration cards become smart cards. A card holder can go to any shop which is open and has available stocks. In short, the scheme has become card holder-friendly and curbed the monopoly power of the FPS dealer. Some states other than Chhattisgarh are also trying to introduce such a scheme on an experimental basis.
More recently, the Government of India has introduced a scheme called ‘One Nation One Ration Card’ which enables migrant labourers to purchase rations from the place where they reside. In August 2021, it was operational in 34 states and Union territories.
The intentions of the scheme are good but there are some hurdles in its implementation which need to be addressed. These problems arise on account of variation in:
It is not clear whether a migrant labourer gets items provided in his/her native state or those in the state s/he has migrated to and what prices will s/he be able to purchase them.
The Centre must learn lessons from the experiences of different countries in order to make PDS sustainable in the long-run.
For instance, Sri Lanka recently shifted to organic manure from chemical fertiliser without required planning. Consequently, it had to face an acute food shortage due to a shortage of organic manure.
Some analysts have cautioned against excessive dependence on chemical fertiliser.
Phosphorus is an important input in the production of chemical fertiliser and about 70-80 per cent of known resources of phosphorus are available only in Morocco.
There is possibility that Morocco may manipulate the price of phosphorus.
Providing excessive subsidies and unemployment relief may make people dependent, as in the case of Venezuela and Zimbabwe.
It is better to teach a person how to catch a fish rather than give free fish to him / her.
Hence, the government should give the right amount of subsidy to deserving people.
The government has to increase livestock as in the case of Uruguay to make the food basket broad-based and nutritious. It has to see to it that the organic content in the soil is adequate, in order to make cultivation environmentally-friendly and sustainable in the long-run.
In short, India has transformed from a food-deficit state to a food-surplus one 75 years after independence. However, the government must adopt environmental-friendly measures to sustain this achievement.
Agroforestry is an intentional integration of trees on farmland.
Globally, it is practised by 1.2 billion people on 10 per cent area of total agricultural lands (over 1 billion hectares).
It is widely popular as ‘a low hanging fruit’ due to its multifarious tangible and intangible benefits.
The net carbon sequestered in agroforestry is 11.35 tonnes of carbon per ha
A panacea for global issues such as climate change, land degradation, pollution and food security, agroforestry is highlighted as a key strategy to fulfil several targets:

In 2017, a New York Times bestseller Project Drawdown published by 200 scientists around the world with a goal of reversing climate change, came up with the most plausible 100 solutions to slash–down greenhouse gas (GHG) emissions.
Out of these 100 solutions, 11 strategies were highlighted under the umbrella of agroforestry such as:-
Nowadays, tree-based farming in India is considered a silver bullet to cure all issues.
It was promoted under the Green India mission of 2001, six out of eight missions under the National Action Plan on Climate Change (NAPCC) and National Agroforestry and Bamboo Mission (NABM), 2017 to bring a third of the geographical area under tree cover and offsetting GHG emissions.
These long-term attempts by the Government of India have helped enhance the agroforestry area to 13.75 million hectares.
The net carbon sequestered in agroforestry is 11.35 tonnes of carbon per ha and carbon sequestration potential is 0.35 tonnes of carbon per ha per year at the country level, according to the Central Agroforestry Research Institute, Jhansi.
India will reduce an additional 2.5-3 billion tonnes of CO2 by increasing tree cover. This extra tree cover could be achieved through agroforestry systems because of their ability to withstand minimum inputs under extreme situations.
Here are some examples which portray the role of agroforestry in achieving at least nine out of the 17 SDGs through sustainable food production, ecosystem services and economic benefits:
SDG 1 — No Poverty: Almost 736 million people still live in extreme poverty. Diversification through integrating trees in agriculture unlocks the treasure to provide multifunctional benefits.
Studies carried out in 2003 in the arid regions of India reported a 10-15 per cent increase in crop yield with Prosopis cineraria (khejari). Adoption of agroforestry increases income & production by reducing the cost of input & production.
SDG 2 — Zero hunger: Tree-based systems provide food and monetary returns. Traditional agroforestry systems like Prosopis cineraria and Madhuca longifolia (Mahua) provide edible returns during drought years known as “lifeline to the poor people”.
Studies showed that 26-50 per cent of households involved in tree products collection and selling act as a coping strategy to deal with hunger.
SDG 3 — Good health and well-being: Human wellbeing and health are depicted through the extent of healthy ecosystems and services they provide.
Agroforestry contributes increased access to diverse nutritious food, supply of medicine, clean air and reduces heat stress.
Vegetative buffers can filter airstreams of particulates by removing dust, gas, microbial constituents and heavy metals.
SDG 5 — Gender equality: Throughout the world around 3 billion people depend on firewood for cooking.
In this, women are the main collectors and it brings drudgery and health issues.
A study from India stated that almost 374 hours per year are spent by women for collection of firewood. Growing trees nearby provides easy access to firewood and diverts time to productive purposes.
SDG 6 — Clean Water and Sanitation: Water is probably the most vital resource for our survival. The inherent capacity of trees offers hydrological regulation as evapotranspiration recharges atmospheric moisture for rainfall; enhanced soil infiltration recharges groundwater; obstructs sediment flow; rainwater filtration by accumulation of heavy metals.
An extensive study in 35 nations published in 2017 concluded that 30 per cent of tree cover in watersheds resulted in improved sanitisation and reduced diarrheal disease.
SDG 7 — Affordable & Clean Energy: Wood fuels are the only source of energy to billions of poverty-stricken people.
Though trees are substitutes of natural forests, modern technologies in the form of biofuels, ethanol, electricity generation and dendro-biomass sources are truly affordable and clean.
Ideal agroforestry models possess fast-growing, high coppicing, higher calorific value and short rotation (2-3 years) characteristics and provide biomass of 200-400 tonnes per ha.
SDG 12 — Responsible consumption and production: The production of agricultural and wood-based commodities on a sustainable basis without depleting natural resources and as low as external inputs (chemical fertilisers and pesticides) to reduce the ecological footprints.
SDG 13 — Climate action: Globally, agricultural production accounts for up to 24 per cent of GHG emissions from around 22.2 million square km of agricultural area, according to the Food and Agriculture Organization.
A 2016 study depicted that conversion of agricultural land to agroforestry sequesters about 27.2± 13.5 tonnes CO2 equivalent per ha per year after establishment of systems.
Trees on farmland mitigate 109.34 million tonnes CO2 equivalent annually from 15.31 million ha, according to a 2017 report. This may offset a third of the total GHG emissions from the agriculture sector of India.
SDG 15 — Life on Land: Agroforestry ‘mimics the forest ecosystem’ to contribute conservation of flora and faunas, creating corridors, buffers to existing reserves and multi-functional landscapes.
Delivery of ecosystem services of trees regulates life on land. A one-hectare area of homegardens in Kerala was found to have 992 trees from 66 species belonging to 31 families, a recent study showed.
The report of the World Agroforestry Centre highlighted those 22 countries that have registered agroforestry as a key strategy in achieving their unconditional national contributions.
Recently, the Government of India has allocated significant financial support for promotion of agroforestry at grassroot level to make the Indian economy as carbon neutral. This makes agroforestry a low-hanging fruit to achieve the global goals.